首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
 Resistance loci for seedling-stage resistance to net blotch disease (Drechslera teres) in barley were mapped with molecular markers in an F2 population derived from a cross between the susceptible barley cultivar ‘Arena’ and the resistant Ethiopian landrace ‘Hor 9088’. Disease reactions were scored with first and second leaves of 2-week-old plants 7 and 9 days after inoculation with a single spore-derived isolate. For linkage analysis, 22 RFLP markers and 284 AFLP markers were used. The seven linkage groups covered 1153.3 cM with an average marker interval of 3.76 cM. The resistance was determined to be inherited in a quantitative manner. Altogether, 12 QTLs were mapped with positions depending on the leaf used for testing and the time period after infection. Heritability in the broad sense ranged between 0.21 and 0.37. Received: 26 May 1998 / Accepted: 9 June 1998  相似文献   

2.
 An AFLP genetic linkage map of flax (Linum usitatissimum) was used to identify two quantitative trait loci (QTLs) on independent linkage groups with a major effect on resistance to Fusarium wilt, a serious disease caused by the soil pathogen Fusarium oxysporum (lini). The linkage map was constructed using a mapping population from doubled-haploid (DH) lines. The DH lines were derived from the haploid component of F2 haploid-diploid twin seed originating from a cross between a polyembryonic, low-linolenic-acid genotype (CRZY8/RA91) and the Australian cultivar ‘Glenelg’. The AFLP technique was employed to generate 213 marker loci covering approximately 1400 cM of the flax genome (n=15) with an average spacing of 10 cM and comprising 18 linkage groups. Sixty AFLP markers (28%) deviated significantly (P<0.05) from the expected segregation ratio. The map incorporated RFLP markers tightly linked to flax rust (Melamspora lini) resistance genes and markers detected by disease resistance gene-like sequences. The study illustrates the potential of the AFLP technique as a robust and rapid method to generate moderately saturated linkage maps, thereby allowing the molecular analysis of traits, such as resistance to Fusarium wilt, that show oligogenic patterns of inheritance. Received: 8 December 1997 / Accepted: 7 April 1998  相似文献   

3.
 A molecular linkage map of Rhododendron has been constructed by using a segregating population from an interspecific cross. Parent-specific maps based on 239 RAPD, 38 RFLP, and two microsatellite markers were aligned using markers heterozygous in both parents. The map of the male parent ‘Cunningham’s White’ comprised 182 DNA markers in 13 linkage groups corresponding to the basic chromosome number. In the female parent ‘Rh 16’ 168 markers were located on 18 linkage groups. An assignment of putative homologous linkage groups was possible for 11 groups of each parent. QTL analyses based on the non-parametric Kruskal-Wallis rank-sum test were performed for the characters “leaf chlorosis” and “flower colour” scored as quantitative traits. For leaf chlorosis, two genomic regions bearing QTLs with significant effects on the trait were identified on two linkage groups of the chlorosis-tolerant parent. RAPD marker analysis of additional lime-stressed genotypes tested under altered environmental conditions verified the relationship between marker allele frequencies and the expression of chlorosis. Highly significant QTL effects for flower colour were found on two chromosomes indicating major genes located in these genome areas. The prospects for utilization of a linkage map in Rhododendron are discussed. Received: 28 September 1998 / Accepted: 5 November 1998  相似文献   

4.
 A linkage map of the pea (Pisum sativum L.) genome is presented which is based on F2 plants produced by crossing the marrowfat cultivar ‘Primo’ and the blue-pea breeding line ‘OSU442-15’. This linkage map consists of 209 markers and covers 1330 cM (Kosambi units) and includes RFLP, RAPD and AFLP markers. By mapping a number of anchor loci, the ‘Primo’בOSU442-15’ map has been related to other pea linkage maps. A feature of the map is the incorporation of 29 loci representing genes of known function, obtained from other laboratories. The map also contains RFLP loci detected using sequence-characterized cDNA clones developed in our laboratory. The putative identities of 38 of these cDNA clones were assigned by examining public-sequence databases for protein or nucleotide-sequence similarities. The conversion of sequence-characterized pea cDNAs into PCR-amplifiable and polymorphic sequence-tagged sites (STSs) was investigated using 18 pairs of primers designed for single-copy sequences. Eleven polymorphic STSs were developed. Received: 18 June 1997 / Accepted: 11 August 1997  相似文献   

5.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

6.
Powdery mildew caused by Erysiphe pisi D.C. is one of the most serious diseases that inflict heavy losses to pea crop world-wide. Identification of resistance sources and their incorporation into susceptible cultivars remains the most effective method of controlling the disease. The present study investigated the resistance phenotype, inheritance, and genomic location of gene(s) controlling resistance to powdery mildew in pea genotype ‘JI2480’. The powdery mildew resistance in ‘JI2480’ appeared to be a spatial phenomenon showing expression only in leaf tissues. By segregation analysis of an F2 progeny of cross ‘Lincoln/JI2480’, the leaf resistance of ‘JI2480’ was shown to be controlled by a single recessive gene, presumed to be er2. Through linkage analysis of 111 resistant F2 progeny plants with simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers adopted from the published linkage maps, the er2 gene was localized on pea linkage group III (LGIII). The assignment of er2 to LGIII, a position different from that reported for er1, has resolved the long standing controversy in the literature regarding the existence and genomic location of er2 gene. A RAPD marker OPX-17_1400, exhibiting cis phase linkage (2.6 cM) to er2 was successfully converted to a sequence characterized amplified region (SCAR) marker, ScX17_1400. The SCAR marker ScX17_1400 will ensure speedy and precise introgression of er2 into susceptible cultivars by permitting selection of er2 heterozygotes amongst BC n F1s without progeny tests and resistance screening.  相似文献   

7.
 Apple scab, caused by the fungus Venturia inaequalis (Cke.) Wint., is an important disease in commercial apple production. A mapping population of 155 individuals, derived from a cross between the apple varieties ‘Prima’ (resistant)בFiesta’ (susceptible), was scored for response to the disease in replicated field and glasshouse trials throughout Europe. Twenty data sets were selected and cluster analysis was used to form a consensus score for the population fitting a 1 : 1 segregation ratio of resistance:susceptibility. The progeny were scored with molecular markers. A detailed map covering 54 cM of the ‘Prima’ linkage group containing the Vf gene for scab resistance was constructed using 24 molecular markers linked to the resistance gene. One isoenzyme marker (Pgm-1), six RFLP markers and 17 RAPD markers formed a linkage group with the consensus measure of resistance to scab. Four marker bridges were established with the corresponding ‘Fiesta’ linkage group with additional markers (one isozyme, one RFLP, three RAPD and one AFLP). A low chi-square value indicated a good fit of the marker ordering, which was in close agreement with previously reported linkage positions for some of the markers and Vf. Differences were observed in the ability of different scoring methods to resolve susceptible and resistant classes. The results obtained for the consensus classification of resistance to scab for the population may suggest the presence of virulent inocula at some sites, which could overcome the Vf gene for resistance. The consequences of relying on individual scoring occasions for studying Vf scab resistance are discussed in the context of linkage analysis, conventional breeding selection, and marker-assisted selection. Received: 23 July 1997 / Accepted: 31 October 1997  相似文献   

8.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

9.
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.  相似文献   

10.
A linkage map of Lablab purpureus consisting of 127 RFLP and 91 RAPD loci was constructed in an F2 population of 119 individuals. This population was derived from a cross between ’Rongai’ (an annual cultivar) and CPI 24973 (a perennial wild accession). The map comprises 17 linkage groups and covers 1610 centiMorgans (cM) with an average distance of 7 cM between markers. Severe segregation distortions were observed, with the very extreme situation where no paternal type was recovered from the mapping population. These results strongly suggest the presence of a gene conferring preferential transmission from the maternal parent ’Rongai’. It was also clear that, while the majority of RAPD markers are valuable when used together with RFLP or other stringent marker systems, they could be problematic when used solely in mapping exercises. Received: 20 April 1999 / Accepted: 23 August 1999  相似文献   

11.
One hundred and sixty microsatellite (simple sequence repeat (SSR)) and six gene-specific markers revealing 174 loci were scored in 94 seedlings from the inter-specific cross of Prunus avium ‘Napoleon’ × Prunus nipponica accession F1292. The co-segregation data from these markers were used to construct a linkage map for cherry which spanned 680 cM over eight linkage groups with an average marker spacing of 3.9 cM per marker and just six gaps longer than 15 cM. Markers previously mapped in Prunus dulcis ‘Texas’ × Prunus persica ‘Earlygold’ allowed the cherry map to be anchored to the peach × almond map and showed the high level of synteny between the species. Eighty-four loci segregated in P. avium ‘Napoleon’ versus 159 in P. nipponica. The segregations of 32 isoenzyme loci in a subset of 47 seedlings from the progeny were scored, using polyacrylamide gel electrophoresis and/or isoelectric focusing separation followed by activity staining, and the co-segregation data were analysed along with those for 39 isoenzymes reported previously and for the 174 sequence-tagged site loci plus an additional two SSR loci. The second map incorporates 233 loci and spans 736 cM over eight linkage groups with an average marker spacing of 3.2 cM per marker and just two gaps greater than 15 cM. The microsatellite map will provide a useful tool for cherry breeding and marker-assisted selection and for synteny studies within Prunus; the gene-specific markers and isoenzymes will be useful for comparisons with maps of other rosaceous fruit crops. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Grapevine rootstock cultivar ‘B?rner’ is a hybrid of Vitis riparia and Vitis cinerea Arnold that shows high resistance to phylloxera (Daktulosphaira vitifoliae Fitch). To localize the determinants of phylloxera root resistance, the susceptible grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) was crossed to ‘B?rner’. Genetic framework maps were built from the progeny. 235 microsatellite markers were placed on the integrated parental map. They cover 1,155.98 cM on 19 linkage groups with an average marker distance of 4.8 cM. Phylloxera resistance was scored by counting nodosities after inoculation of the root system. Progeny plants were triplicated and experimentally infected in 2 years. A scan of the genetic maps indicated a quantitative trait locus on linkage group 13. This region was targeted by six microsatellite-type markers newly developed from the V. vinifera model genome sequence. Two of these appear closely linked to the trait, and can be useful for marker-assisted breeding.  相似文献   

13.
 A map of the sunflower genome, based on expressed sequences and consisting of 273 loci, was constructed. The map incorporates data from seven F2 populations, for a total of 1115 individuals. Two hundred and fourty five loci corresponding to 170 anonymous cDNA markers and four loci for morphological markers were mapped. We also mapped 18 loci corresponding to previously described genes or to sequences obtained through homology cloning. The unit maps vary from 774 cM to 1060 cM, with an average value of 14 major linkage groups. The integrated map is arranged in 17 major linkage groups including 238 loci, plus four small segments with 2–5 marker loci; and covers 1573 cM with an overall average marker interval of 7 cM. Thirty five percent of the markers were dominant in nature and 30% showed inter-linkage group duplication without any indication of homoeologous linkage groups. Evidence is provided for the independence of two distinct fertility restoration genes, for the presence of two loosely linked branching loci, and for marker tightly linked to the Rf1 restoration locus. This map provides an efficient tool in breeding applications such as disease-resistance mapping, QTL analyses and marker-assisted selection. Received: 27 August 1998 / Accepted: 28 December 1998  相似文献   

14.
 Foliar resistance to Ascochyta lentis is controlled at a single major locus by a dominant gene (AbR 1 ) in the lentil accession ILL5588 (cv ‘Northfield’). Flanking RAPD markers that are closely linked to the resistance locus in coupling phase were identified by bulked segregant analysis. Out of 261 decanucleotide primers screened 7 produced a polymorphic marker that segregated with the resistance locus, and all markers were found to exist within a single linkage group. Five of the seven RAPD markers were within 30 cM of the resistance locus. Log likelihood analysis for detecting QTL associated with the foliar resistance revealed that a single narrow peak accounted for almost 90% of the variance of resistance between the bulks. Preliminary mapping in an F3 population revealed that the closest flanking markers were approximately 6 and 14 centiMorgans (cM) away from the resistance locus. These markers should be useful for the discrimination of resistant germplasm through marker-assisted selection in future breeding programmes and represent the first essential step towards the map-based cloning of this resistance gene. Received: 18 December 1997 / Accepted: 9 June 1998  相似文献   

15.
 The present study shows that the recently described mitochondrial H haplotype is associated with cytoplasmic male-sterility (CMS). This new source of CMS appears to be different from the mitotype E-associated CMS most frequently found in natural populations. A mitotype H progeny with a sexual phenotype segregation was used to identify a gene restoring male fertility (R1H ). Using bulk segregant analysis (BSA), nine RAPD markers linked to this restorer locus were detected and mapped. The comparison with other Beta genetic maps shows that the closest RAPD marker, distant from R1H by 5.2 cM, belongs to the same linkage group as the monogermy locus. In order to determine the position of R1H more precisely, four RFLP loci within this linkage group were mapped in the segregating progeny. It thus became possible to construct a linkage map of the region containing the RFLP, RAPD and R1H loci. The closest RFLP marker was located 1.7 cM away from R1H. However, a nuclear gene restoring the ‘Owen’ CMS which is currently used in sugar beet breeding is reportedly linked to the monogermy locus, raising the question of a possible identity between the new CMS system and the ‘Owen’ CMS. Received: 15 September 1997 / Accepted: 1 December 1997  相似文献   

16.
Sweetpotato genomic research is minimal compared to most other major crops despite its worldwide importance as a food crop. The development of a genetic linkage map in sweetpotato will provide valuable information about the genomic organization of this important species that can be used by breeders to accelerate the introgression of desired traits into breeding lines. We developed a mapping population consisting of 240 individuals of a cross between ‘Tanzania’, a cream-fleshed African landrace, and ‘Beauregard’, an orange-fleshed US sweetpotato cultivar. The genetic linkage map of this population was constructed using Amplified Fragment Length Polymorphism (AFLP) markers. A total of 1944 (‘Tanzania’) and 1751 (‘Beauregard’) AFLP markers, of which 1511 and 1303 were single-dose markers respectively, were scored. Framework maps consisting of 86 and 90 linkage groups for ‘Tanzania’ and ‘Beauregard’ respectively, were developed using a combination of JoinMap 3.0 and MAPMAKER/EXP 3.0. A total of 947 single-dose markers were placed in the final framework linkage map for ‘Tanzania’. The linkage map size was estimated as 5792 cM, with an average distance between markers of 4.5 cM. A total of 726 single-dose markers were placed in the final framework map for ‘Beauregard’. The linkage map length was estimated as 5276 cM, with an average distance between markers of 4.8 cM. Duplex and triple-dose markers were used to identify the corresponding homologous groups in the maps. Our research supports the hypothesis that sweetpotato is an autopolyploid. Distorted segregation in some markers of different dosages in this study suggests that some preferential pairing occurs in sweetpotato. However, strict allopolyploid inheritance in sweetpotato can be ruled out due to the observed segregation ratios of the markers, and the proportion of simplex to multiple-dose markers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper is a portion of a dissertation submitted by Jim C. Cervantes-Flores.  相似文献   

17.
A genetic linkage map of durum wheat   总被引:20,自引:6,他引:14  
 A genetic linkage map of tetraploid wheat [Triticum turgidum (L.) Thell.] was constructed using segregation data from a population of 65 recombinant inbred lines (RILs) derived from a cross between the durum wheat cultivar Messapia and accession MG4343 of T. turgidum (L.) Thell. ssp dicoccoides (Korn.) Thell. A total of 259 loci were analysed, including 244 restriction fragment length polymorphisms (RFLPs), one PCR (polymerase chain reaction) marker (a sequence coding for a LMW (low-molecular-weight) glutenin subunit gene located at the Glu-B3 locus), seven biochemical (six seed-storage protein loci and one isozyme locus) and seven morphological markers. A total of 213 loci were mapped at a LOD≥3 on all 14 chromosomes of the A and B genomes. The total length of the map is 1352 cM and the average distance between adjacent markers is 6.3 cM. Forty six loci could not be mapped at a LOD≥3. A fraction (18.6%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1B, 3AL, 4AL, 6AL and 7AL. The durum wheat map was compared with the published maps of bread wheat using several common RFLP markers and general features are discussed. The markers detected the known structural rearrangements involving chromosomes 4A, 5A and 7B as well as the translocation between 2B-6B, but not the deletion on 2BS. This map provides a useful tool for analysing and breeding economically important quantitative traits and for marker-assisted selection, as well as for studies of genome organisation in small grain cereal species. Received: 5 January 1998 / Accepted: 31 March 1998  相似文献   

18.
 An integrated genetic map of the dioecious species Asparagus officinalis L. has been constructed on the basis of RFLP, RAPD, AFLP and isoenzyme markers. The segregation analysis of the polymorphic markers was carried out on the progeny of five different crosses between male and female doubled-haploid clones generated by anther culture. A total of 274 markers have been organized to ten linkage groups spanning 721.4 cM. Since the haploid chromosome number of asparagus is ten, the established linkage groups probably represent the different chromosomes; however, the only group associated with a specific chromosome is the one which includes sex, whose determinant genes have been located on chromosome 5. A total of 33 molecular markers (13 RFLPs, 18 AFLPs, 2 RAPDs and 1 isoenzyme) have been located on this chromosome. The closest marker to the sex determinant is the AFLP SV marker at 3.2 cM. Received: 26 March 1998 / Accepted: 30 April 1998  相似文献   

19.
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.  相似文献   

20.
 We have constructed a sex-averaged genetic linkage map in coastal Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var ‘menziesii’) using a three-generation outcrossed pedigree and molecular markers. Our research objectives are to learn about genome organization and to identify markers associated with adaptive traits. The map reported here is comprised of 141 markers organized into 17 linkage groups and covers 1,062 centiMorgans (cM). Of the markers positioned on the map, 94 were derived from a Douglas-fir complimentary-DNA (cDNA) library that was constructed from new-growth needle tissue. Other markers include 11 Douglas-fir genomic-DNAs, 20 loblolly pine (Pinus taeda L.) cDNAs, 15 random amplified polymorphic DNAs (RAPDs) and a PCR-amplified phytochrome probe. A high degree of variation was detected in each of the two parents of our mapping population, and many of the restriction fragment length polymorphism (RFLP) and RAPD phenotypes were complex. Marker data were analyzed for linkage using mapping software JOINMAP version 2.0. Received: 16 March 1998 / Accepted: 22 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号