首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two commonly used heuristic approaches to the generalized tree alignment problem are compared in the context of phylogenetic analysis of DNA sequence data. These approaches, multiple sequence alignment + phylogenetic tree reconstruction (MSA+TR) and direct optimization (DO), are alternative heuristic procedures used to approach the nested NP‐Hard optimizations presented by the phylogenetic analysis of unaligned sequences under maximum parsimony. Multiple MSA+TR implementations and DO were compared in terms of optimality score (phylogenetic tree cost) over multiple empirical and simulated datasets with differing levels of heuristic intensity. In all cases examined, DO outperformed MSA+TR with average improvement in parsimony score of 14.78% (5.64–52.59%).  相似文献   

2.
Most phylogenetic tree estimation methods assume that there is a single set of hierarchical relationships among sequences in a data set for all sites along an alignment. Mosaic sequences produced by past recombination events will violate this assumption and may lead to misleading results from a phylogenetic analysis due to the imposition of a single tree along the entire alignment. Therefore, the detection of past recombination is an important first step in an analysis. A Bayesian model for the changes in topology caused by recombination events is described here. This model relaxes the assumption of one topology for all sites in an alignment and uses the theory of Hidden Markov models to facilitate calculations, the hidden states being the underlying topologies at each site in the data set. Changes in topology along the multiple sequence alignment are estimated by means of the maximum a posteriori (MAP) estimate. The performance of the MAP estimate is assessed by application of the model to data sets of four sequences, both simulated and real.  相似文献   

3.
Several stochastic models of character change, when implemented in a maximum likelihood framework, are known to give a correspondence between the maximum parsimony method and the method of maximum likelihood. One such model has an independently estimated branch-length parameter for each site and each branch of the phylogenetic tree. This model--the no-common-mechanism model--has many parameters, and, in fact, the number of parameters increases as fast as the alignment is extended. We take a Bayesian approach to the no-common-mechanism model and place independent gamma prior probability distributions on the branch-length parameters. We are able to analytically integrate over the branch lengths, and this allowed us to implement an efficient Markov chain Monte Carlo method for exploring the space of phylogenetic trees. We were able to reliably estimate the posterior probabilities of clades for phylogenetic trees of up to 500 sequences. However, the Bayesian approach to the problem, at least as implemented here with an independent prior on the length of each branch, does not tame the behavior of the branch-length parameters. The integrated likelihood appears to be a simple rescaling of the parsimony score for a tree, and the marginal posterior probability distribution of the length of a branch is dependent upon how the maximum parsimony method reconstructs the characters at the interior nodes of the tree. The method we describe, however, is of potential importance in the analysis of morphological character data and also for improving the behavior of Markov chain Monte Carlo methods implemented for models in which sites share a common branch-length parameter.  相似文献   

4.
We consider character sequences evolving on a phylogenetic tree under the TKF91 model. We show that as the sequence lengths tend to infinity the topology of the phylogenetic tree and the edge lengths are determined by any one of (a) the alignment of sequences (b) the collection of sequence lengths. We also show that the probability of any homology structure on a collection of sequences related by a TKF91 process on a tree is independent of the root location.  相似文献   

5.
A method for computing the likelihood of a set of sequences assuming a phylogenetic network as an evolutionary hypothesis is presented. The approach applies directed graphical models to sequence evolution on networks and is a natural generalization of earlier work by Felsenstein on evolutionary trees, including it as a special case. The likelihood computation involves several steps. First, the phylogenetic network is rooted to form a directed acyclic graph (DAG). Then, applying standard models for nucleotide/amino acid substitution, the DAG is converted into a Bayesian network from which the joint probability distribution involving all nodes of the network can be directly read. The joint probability is explicitly dependent on branch lengths and on recombination parameters (prior probability of a parent sequence). The likelihood of the data assuming no knowledge of hidden nodes is obtained by marginalization, i.e., by summing over all combinations of unknown states. As the number of terms increases exponentially with the number of hidden nodes, a Markov chain Monte Carlo procedure (Gibbs sampling) is used to accurately approximate the likelihood by summing over the most important states only. Investigating a human T-cell lymphotropic virus (HTLV) data set and optimizing both branch lengths and recombination parameters, we find that the likelihood of a corresponding phylogenetic network outperforms a set of competing evolutionary trees. In general, except for the case of a tree, the likelihood of a network will be dependent on the choice of the root, even if a reversible model of substitution is applied. Thus, the method also provides a way in which to root a phylogenetic network by choosing a node that produces a most likely network.  相似文献   

6.
Alignment of nucleotide and/or amino acid sequences is a fundamental component of sequence‐based molecular phylogenetic studies. Here we examined how different alignment methods affect the phylogenetic trees that are inferred from the alignments. We used simulations to determine how alignment errors can lead to systematic biases that affect phylogenetic inference from those sequences. We compared four approaches to sequence alignment: progressive pairwise alignment, simultaneous multiple alignment of sequence fragments, local pairwise alignment and direct optimization. When taking into account branch support, implied alignments produced by direct optimization were found to show the most extreme behaviour (based on the alignment programs for which nearly equivalent alignment parameters could be set) in that they provided the strongest support for the correct tree in the simulations in which it was easy to resolve the correct tree and the strongest support for the incorrect tree in our long‐branch‐attraction simulations. When applied to alignment‐sensitive process partitions with different histories, direct optimization showed the strongest mutual influence between the process partitions when they were aligned and phylogenetically analysed together, which makes detecting recombination more difficult. Simultaneous alignment performed well relative to direct optimization and progressive pairwise alignment across all simulations. Rather than relying upon methods that integrate alignment and tree search into a single step without accounting for alignment uncertainty, as with implied alignments, we suggest that simultaneous alignment using the similarity criterion, within the context of information available on biological processes and function, be applied whenever possible for sequence‐based phylogenetic analyses.  相似文献   

7.
This paper proposes a graphical method for detecting interspecies recombination in multiple alignments of DNA sequences. A fixed-size window is moved along a given DNA sequence alignment. For every position, the marginal posterior probability over tree topologies is determined by means of a Markov chain Monte Carlo simulation. Two probabilistic divergence measures are plotted along the alignment, and are used to identify recombinant regions. The method is compared with established detection methods on a set of synthetic benchmark sequences and two real-world DNA sequence alignments.  相似文献   

8.
Substitution rates are one of the most fundamental parameters in a phylogenetic analysis and are represented in phylogenetic models as the branch lengths on a tree. Variation in substitution rates across an alignment of molecular sequences is well established and likely caused by variation in functional constraint across the genes encoded in the sequences. Rate variation across alignment sites is important to accommodate in a phylogenetic analysis; failure to account for across-site rate variation can cause biased estimates of phylogeny or other model parameters. Traditionally, rate variation across sites has been modeled by treating the rate for a site as a random variable drawn from some probability distribution (such as the gamma probability distribution) or by partitioning sites to different rate classes and estimating the rate for each class independently. We consider a different approach, related to site-specific models in which sites are partitioned to rate classes. However, instead of treating the partitioning scheme in which sites are assigned to rate classes as a fixed assumption of the analysis, we treat the rate partitioning as a random variable under a Dirichlet process prior. We find that the Dirichlet process prior model for across-site rate variation fits alignments of DNA sequence data better than commonly used models of across-site rate variation. The method appears to identify the underlying codon structure of protein-coding genes; rate partitions that were sampled by the Markov chain Monte Carlo procedure were closer to a partition in which sites are assigned to rate classes by codon position than to randomly permuted partitions but still allow for additional variability across sites.  相似文献   

9.
The objective of this study was to obtain a quantitative assessment of the monophyly of morning glory taxa, specifically the genus Ipomoea and the tribe Argyreieae. Previous systematic studies of morning glories intimated the paraphyly of Ipomoea by suggesting that the genera within the tribe Argyreieae are derived from within Ipomoea; however, no quantitative estimates of statistical support were developed to address these questions. We applied a Bayesian analysis to provide quantitative estimates of monophyly in an investigation of morning glory relationships using DNA sequence data. We also explored various approaches for examining convergence of the Markov chain Monte Carlo (MCMC) simulation of the Bayesian analysis by running 18 separate analyses varying in length. We found convergence of the important components of the phylogenetic model (the tree with the maximum posterior probability, branch lengths, the parameter values from the DNA substitution model, and the posterior probabilities for clade support) for these data after one million generations of the MCMC simulations. In the process, we identified a run where the parameter values obtained were often outside the range of values obtained from the other runs, suggesting an aberrant result. In addition, we compared the Bayesian method of phylogenetic analysis to maximum likelihood and maximum parsimony. The results from the Bayesian analysis and the maximum likelihood analysis were similar for topology, branch lengths, and parameters of the DNA substitution model. Topologies also were similar in the comparison between the Bayesian analysis and maximum parsimony, although the posterior probabilities and the bootstrap proportions exhibited some striking differences. In a Bayesian analysis of three data sets (ITS sequences, waxy sequences, and ITS + waxy sequences) no supoort for the monophyly of the genus Ipomoea, or for the tribe Argyreieae, was observed, with the estimate of the probability of the monophyly of these taxa being less than 3.4 x 10(-7).  相似文献   

10.
MOTIVATION: A large, high-quality database of homologous sequence alignments with good estimates of their corresponding phylogenetic trees will be a valuable resource to those studying phylogenetics. It will allow researchers to compare current and new models of sequence evolution across a large variety of sequences. The large quantity of data may provide inspiration for new models and methodology to study sequence evolution and may allow general statements about the relative effect of different molecular processes on evolution. RESULTS: The Pandit 7.6 database contains 4341 families of sequences derived from the seed alignments of the Pfam database of amino acid alignments of families of homologous protein domains (Bateman et al., 2002). Each family in Pandit includes an alignment of amino acid sequences that matches the corresponding Pfam family seed alignment, an alignment of DNA sequences that contain the coding sequence of the Pfam alignment when they can be recovered (overall, 82.9% of sequences taken from Pfam) and the alignment of amino acid sequences restricted to only those sequences for which a DNA sequence could be recovered. Each of the alignments has an estimate of the phylogenetic tree associated with it. The tree topologies were obtained using the neighbor joining method based on maximum likelihood estimates of the evolutionary distances, with branch lengths then calculated using a standard maximum likelihood approach.  相似文献   

11.
We introduce another view of sequence evolution. Contrary to other approaches, we model the substitution process in two steps. First we assume (arbitrary) scaled branch lengths on a given phylogenetic tree. Second we allocate a Poisson distributed number of substitutions on the branches. The probability to place a mutation on a branch is proportional to its relative branch length. More importantly, the action of a single mutation on an alignment column is described by a doubly stochastic matrix, the so-called one-step mutation matrix. This matrix leads to analytical formulae for the posterior probability distribution of the number of substitutions for an alignment column.  相似文献   

12.
To infer a phylogenetic tree from a set of DNA sequences, typically a multiple alignment is first used to obtain homologous bases. The inferred phylogeny can be very sensitive to how the alignment was created. We develop tools for analyzing the robustness of phylogeny to perturbations in alignment parameters in the NW algorithm. Our main tool is parametric alignment, with novel improvements that are of general interest in parametric inference. Using parametric alignment and a Gaussian distribution on alignment parameters, we derive probabilities of optimal alignment summaries and inferred phylogenies. We apply our method to analyze intronic sequences from Drosophila flies. We show that phylogeny estimates can be sensitive to the choice of alignment parameters, and that parametric alignment elucidates the relationship between alignment parameters and reconstructed trees.  相似文献   

13.
We describe a novel model and algorithm for simultaneously estimating multiple molecular sequence alignments and the phylogenetic trees that relate the sequences. Unlike current techniques that base phylogeny estimates on a single estimate of the alignment, we take alignment uncertainty into account by considering all possible alignments. Furthermore, because the alignment and phylogeny are constructed simultaneously, a guide tree is not needed. This sidesteps the problem in which alignments created by progressive alignment are biased toward the guide tree used to generate them. Joint estimation also allows us to model rate variation between sites when estimating the alignment and to use the evidence in shared insertion/deletions (indels) to group sister taxa in the phylogeny. Our indel model makes use of affine gap penalties and considers indels of multiple letters. We make the simplifying assumption that the indel process is identical on all branches. As a result, the probability of a gap is independent of branch length. We use a Markov chain Monte Carlo (MCMC) method to sample from the posterior of the joint model, estimating the most probable alignment and tree and their support simultaneously. We describe a new MCMC transition kernel that improves our algorithm's mixing efficiency, allowing the MCMC chains to converge even when started from arbitrary alignments. Our software implementation can estimate alignment uncertainty and we describe a method for summarizing this uncertainty in a single plot.  相似文献   

14.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration.  相似文献   

15.
Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular data sets. Here, we compare several models for combining different genes for the purpose of evaluating the likelihood of tree topologies. Three methods of branch length estimation were studied: assuming all genes have the same branch lengths (concatenate model), assuming that branch lengths are proportional among genes (proportional model), or assuming that each gene has a separate set of branch lengths (separate model). We also compared three models of among-site rate variation: the homogenous model, a model that assumes one gamma parameter for all genes, and a model that assumes one gamma parameter for each gene. On the basis of two nuclear and one mitochondrial amino acid data sets, our results suggest that, depending on the data set chosen, either the separate model or the proportional model represents the most appropriate method for branch length analysis. For all the data sets examined, one gamma parameter for each gene represents the best model for among-site rate variation. Using these models we analyzed alternative mammalian tree topologies, and we describe the effect of the assumed model on the maximum likelihood tree. We show that the choice of the model has an impact on the best phylogeny obtained.  相似文献   

16.
Exact and heuristic algorithms for the Indel Maximum Likelihood Problem.   总被引:1,自引:0,他引:1  
Given a multiple alignment of orthologous DNA sequences and a phylogenetic tree for these sequences, we investigate the problem of reconstructing the most likely scenario of insertions and deletions capable of explaining the gaps observed in the alignment. This problem, that we called the Indel Maximum Likelihood Problem (IMLP), is an important step toward the reconstruction of ancestral genomics sequences, and is important for studying evolutionary processes, genome function, adaptation and convergence. We solve the IMLP using a new type of tree hidden Markov model whose states correspond to single-base evolutionary scenarios and where transitions model dependencies between neighboring columns. The standard Viterbi and Forward-backward algorithms are optimized to produce the most likely ancestral reconstruction and to compute the level of confidence associated to specific regions of the reconstruction. A heuristic is presented to make the method practical for large data sets, while retaining an extremely high degree of accuracy. The methods are illustrated on a 1-Mb alignment of the CFTR regions from 12 mammals.  相似文献   

17.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.  相似文献   

18.
Yu Y  Degnan JH  Nakhleh L 《PLoS genetics》2012,8(4):e1002660
Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa.  相似文献   

19.
MOTIVATION: We present a statistical method for detecting recombination, whose objective is to accurately locate the recombinant breakpoints in DNA sequence alignments of small numbers of taxa (4 or 5). Our approach explicitly models the sequence of phylogenetic tree topologies along a multiple sequence alignment. Inference under this model is done in a Bayesian way, using Markov chain Monte Carlo (MCMC). The algorithm returns the site-dependent posterior probability of each tree topology, which is used for detecting recombinant regions and locating their breakpoints. RESULTS: The method was tested on a synthetic and three real DNA sequence alignments, where it was found to outperform the established detection methods PLATO, RECPARS, and TOPAL.  相似文献   

20.
Character-state space versus rate of evolution in phylogenetic inference   总被引:1,自引:0,他引:1  
With only four alternative character states, parallelisms and reversals are expected to occur frequently when using nucleotide characters for phylogenetic inference. Greater available character‐state space has been described as one of the advantages of third codon positions relative to first and second codon positions, as well as amino acids relative to nucleotides. We used simulations to quantify how character‐state space and rate of evolution relate to one another, and how this relationship is affected by differences in: tree topology, branch lengths, rate heterogeneity among sites, probability of change among states, and frequency of character states. Specifically, we examined how inferred tree lengths, consistency and retention indices, and accuracy of phylogenetic inference are affected. Our results indicate that the relatively small increases in the character‐state space evident in empirical data matrices can provide enormous benefits for the accuracy of phylogenetic inference. This advantage may become more pronounced with unequal probabilities of change among states. Although increased character‐state space greatly improved the accuracy of topology inference, improvements in the estimation of the correct tree length were less apparent. Accuracy and inferred tree length improved most when character‐state space increased initially; further increases provided more modest improvements. © The Willi Hennig Society 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号