首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Conventional phylogenetic tree estimation methods assume that all sites in a DNA multiple alignment have the same evolutionary history. This assumption is violated in data sets from certain bacteria and viruses due to recombination, a process that leads to the creation of mosaic sequences from different strains and, if undetected, causes systematic errors in phylogenetic tree estimation. In the current work, a hidden Markov model (HMM) is employed to detect recombination events in multiple alignments of DNA sequences. The emission probabilities in a given state are determined by the branching order (topology) and the branch lengths of the respective phylogenetic tree, while the transition probabilities depend on the global recombination probability. The present study improves on an earlier heuristic parameter optimization scheme and shows how the branch lengths and the recombination probability can be optimized in a maximum likelihood sense by applying the expectation maximization (EM) algorithm. The novel algorithm is tested on a synthetic benchmark problem and is found to clearly outperform the earlier heuristic approach. The paper concludes with an application of this scheme to a DNA sequence alignment of the argF gene from four Neisseria strains, where a likely recombination event is clearly detected.  相似文献   

2.
A comparison of phylogenetic network methods using computer simulation   总被引:1,自引:0,他引:1  

Background

We present a series of simulation studies that explore the relative performance of several phylogenetic network approaches (statistical parsimony, split decomposition, union of maximum parsimony trees, neighbor-net, simulated history recombination upper bound, median-joining, reduced median joining and minimum spanning network) compared to standard tree approaches, (neighbor-joining and maximum parsimony) in the presence and absence of recombination.

Principal Findings

In the absence of recombination, all methods recovered the correct topology and branch lengths nearly all of the time when the substitution rate was low, except for minimum spanning networks, which did considerably worse. At a higher substitution rate, maximum parsimony and union of maximum parsimony trees were the most accurate. With recombination, the ability to infer the correct topology was halved for all methods and no method could accurately estimate branch lengths.

Conclusions

Our results highlight the need for more accurate phylogenetic network methods and the importance of detecting and accounting for recombination in phylogenetic studies. Furthermore, we provide useful information for choosing a network algorithm and a framework in which to evaluate improvements to existing methods and novel algorithms developed in the future.  相似文献   

3.
There has been considerable interest in the problem of making maximum likelihood (ML) evolutionary trees which allow insertions and deletions. This problem is partly one of formulation: how does one define a probabilistic model for such trees which treats insertion and deletion in a biologically plausible manner? A possible answer to this question is proposed here by extending the concept of a hidden Markov model (HMM) to evolutionary trees. The model, called a tree-HMM, allows what may be loosely regarded as learnable affine-type gap penalties for alignments. These penalties are expressed in HMMs as probabilities of transitions between states. In the tree-HMM, this idea is given an evolutionary embodiment by defining trees of transitions. Just as the probability of a tree composed of ungapped sequences is computed, by Felsenstein's method, using matrices representing the probabilities of substitutions of residues along the edges of the tree, so the probabilities in a tree-HMM are computed by substitution matrices for both residues and transitions. How to define these matrices by a ML procedure using an algorithm that learns from a database of protein sequences is shown here. Given these matrices, one can define a tree-HMM likelihood for a set of sequences, assuming a particular tree topology and an alignment of the sequences to the model. If one could efficiently find the alignment which maximizes (or comes close to maximizing) this likelihood, then one could search for the optimal tree topology for the sequences. An alignment algorithm is defined here which, given a particular tree topology, is guaranteed to increase the likelihood of the model. Unfortunately, it fails to find global optima for realistic sequence sets. Thus further research is needed to turn the tree-HMM into a practical phylogenetic tool.  相似文献   

4.
Several stochastic models of character change, when implemented in a maximum likelihood framework, are known to give a correspondence between the maximum parsimony method and the method of maximum likelihood. One such model has an independently estimated branch-length parameter for each site and each branch of the phylogenetic tree. This model--the no-common-mechanism model--has many parameters, and, in fact, the number of parameters increases as fast as the alignment is extended. We take a Bayesian approach to the no-common-mechanism model and place independent gamma prior probability distributions on the branch-length parameters. We are able to analytically integrate over the branch lengths, and this allowed us to implement an efficient Markov chain Monte Carlo method for exploring the space of phylogenetic trees. We were able to reliably estimate the posterior probabilities of clades for phylogenetic trees of up to 500 sequences. However, the Bayesian approach to the problem, at least as implemented here with an independent prior on the length of each branch, does not tame the behavior of the branch-length parameters. The integrated likelihood appears to be a simple rescaling of the parsimony score for a tree, and the marginal posterior probability distribution of the length of a branch is dependent upon how the maximum parsimony method reconstructs the characters at the interior nodes of the tree. The method we describe, however, is of potential importance in the analysis of morphological character data and also for improving the behavior of Markov chain Monte Carlo methods implemented for models in which sites share a common branch-length parameter.  相似文献   

5.
Evolutionary relationships are typically inferred from molecular sequence data using a statistical model of the evolutionary process. When the model accurately reflects the underlying process, probabilistic phylogenetic methods recover the correct relationships with high accuracy. There is ample evidence, however, that models commonly used today do not adequately reflect real-world evolutionary dynamics. Virtually all contemporary models assume that relatively fast-evolving sites are fast across the entire tree, whereas slower sites always evolve at relatively slower rates. Many molecular sequences, however, exhibit site-specific changes in evolutionary rates, called "heterotachy." Here we examine the accuracy of 2 phylogenetic methods for incorporating heterotachy, the mixed branch length model--which incorporates site-specific rate changes by summing likelihoods over multiple sets of branch lengths on the same tree--and the covarion model, which uses a hidden Markov process to allow sites to switch between variable and invariable as they evolve. Under a variety of simple heterogeneous simulation conditions, the mixed model was dramatically more accurate than homotachous models, which were subject to topological biases as well as biases in branch length estimates. When data were simulated with strong versions of the types of heterotachy observed in real molecular sequences, the mixed branch length model was more accurate than homotachous techniques. Analyses of empirical data sets confirmed that the mixed branch length model can improve phylogenetic accuracy under conditions that cause homotachous models to fail. In contrast, the covarion model did not improve phylogenetic accuracy compared with homotachous models and was sometimes substantially less accurate. We conclude that a mixed branch length approach, although not the solution to all phylogenetic errors, is a valuable strategy for improving the accuracy of inferred trees.  相似文献   

6.
Yang Z 《Systematic biology》1998,47(1):125-133
The effect of the evolutionary rate of a gene on the accuracy of phylogeny reconstruction was examined by computer stimulation. The evolutionary rate is measured by the tree length, that is, the expected total number of nucleotide substitutions per site on the phylogeny. DNA sequence data were simulated using both fixed trees with specified branch lengths and random trees with branch lengths generated from a model of cladogenesis. The parsimony and likelihood methods were used for phylogeny reconstruction, and the proportion of correctly recovered branch partitions by each method was estimated. Phylogenetic methods including parsimony appear quite tolerant of multiple substitutions at the same site. The optimum levels of sequence divergence were even higher than upper limits previously suggested for saturation of substitutions, indicating that the problem of saturation may have been exaggerated. Instead, the lack of information at low levels of divergence should be seriously considered in evaluation of a gene's phylogenetic utility, especially when the gene sequence is short. The performance of parsimony, relative to that of likelihood, does not necessarily decrease with the increase of the evolutionary rate.  相似文献   

7.
Phylogenetic networks represent the evolution of organisms that have undergone reticulate events, such as recombination, hybrid speciation or lateral gene transfer. An important way to interpret a phylogenetic network is in terms of the trees it displays, which represent all the possible histories of the characters carried by the organisms in the network. Interestingly, however, different networks may display exactly the same set of trees, an observation that poses a problem for network reconstruction: from the perspective of many inference methods such networks are indistinguishable. This is true for all methods that evaluate a phylogenetic network solely on the basis of how well the displayed trees fit the available data, including all methods based on input data consisting of clades, triples, quartets, or trees with any number of taxa, and also sequence-based approaches such as popular formalisations of maximum parsimony and maximum likelihood for networks. This identifiability problem is partially solved by accounting for branch lengths, although this merely reduces the frequency of the problem. Here we propose that network inference methods should only attempt to reconstruct what they can uniquely identify. To this end, we introduce a novel definition of what constitutes a uniquely reconstructible network. For any given set of indistinguishable networks, we define a canonical network that, under mild assumptions, is unique and thus representative of the entire set. Given data that underwent reticulate evolution, only the canonical form of the underlying phylogenetic network can be uniquely reconstructed. While on the methodological side this will imply a drastic reduction of the solution space in network inference, for the study of reticulate evolution this is a fundamental limitation that will require an important change of perspective when interpreting phylogenetic networks.  相似文献   

8.
A statistical method is developed for estimating the standard errors of branch lengths in a phylogenetic tree reconstructed without assuming equal rates of nucleotide substitution among different lineages. This method can be easily used for testing whether the length of an interior branch in a reconstructed tree is positive, i.e., whether the topology of the tree is correct. Computer simulations indicate that this method is appropriate for a statistical test. As an example, this method is applied to phylogenetic trees reconstructed for the four hominoid species: human, chimpanzee, gorilla, and orangutan. The results obtained show that the present method provides a powerful statistical test.  相似文献   

9.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration.  相似文献   

10.
Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular data sets. Here, we compare several models for combining different genes for the purpose of evaluating the likelihood of tree topologies. Three methods of branch length estimation were studied: assuming all genes have the same branch lengths (concatenate model), assuming that branch lengths are proportional among genes (proportional model), or assuming that each gene has a separate set of branch lengths (separate model). We also compared three models of among-site rate variation: the homogenous model, a model that assumes one gamma parameter for all genes, and a model that assumes one gamma parameter for each gene. On the basis of two nuclear and one mitochondrial amino acid data sets, our results suggest that, depending on the data set chosen, either the separate model or the proportional model represents the most appropriate method for branch length analysis. For all the data sets examined, one gamma parameter for each gene represents the best model for among-site rate variation. Using these models we analyzed alternative mammalian tree topologies, and we describe the effect of the assumed model on the maximum likelihood tree. We show that the choice of the model has an impact on the best phylogeny obtained.  相似文献   

11.
Yu Y  Degnan JH  Nakhleh L 《PLoS genetics》2012,8(4):e1002660
Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa.  相似文献   

12.
Phylogenetic dating with confidence intervals using mean path lengths   总被引:4,自引:0,他引:4  
The mean path length (MPL) method, a simple method for dating nodes in a phylogenetic tree, is presented. For small trees the age estimates and corresponding confidence intervals, calibrated with fossil data, can be calculated by hand, and for larger trees a computer program gives the results instantaneously (a Pascal program is available upon request). Necessary input data are a rooted phylogenetic tree with edge lengths (internode lengths) approximately corresponding to the number of substitutions between the nodes. Given this, the MPL method produces relative age estimates with confidence intervals for all nodes of the tree. With the age of one or several nodes of the tree being known from reference fossils, the relative age estimates induce absolute age estimates and confidence intervals of the nodes of the tree. The MPL method relies on the assumptions that substitutions occur randomly and independently in different sites in the DNA sequence and that the substitution rates are approximately constant in time, i.e., assuming a molecular clock. A method is presented for identification of the nodes in the tree at which significant deviations from the clock assumption occur, such that dating may be done using different rates in different parts of the tree. The MPL method is illustrated with the Liliales, a group of monocot flowering plants.  相似文献   

13.
Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals—each with many genes—splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.  相似文献   

14.
Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals.  相似文献   

15.
Consequences of recombination on traditional phylogenetic analysis   总被引:38,自引:0,他引:38  
Schierup MH  Hein J 《Genetics》2000,156(2):879-891
We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mtDNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination. With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may not be immediately detectable in a data set. The phylogenies when recombination is present superficially resemble phylogenies for sequences from an exponentially growing population. However, exponential growth has a different effect on statistics such as Tajima's D. Furthermore, ignoring recombination leads to a large overestimation of the substitution rate heterogeneity and the loss of the molecular clock. These results are discussed in relation to viral and mtDNA data sets.  相似文献   

16.
The Bayesian method for estimating species phylogenies from molecular sequence data provides an attractive alternative to maximum likelihood with nonparametric bootstrap due to the easy interpretation of posterior probabilities for trees and to availability of efficient computational algorithms. However, for many data sets it produces extremely high posterior probabilities, sometimes for apparently incorrect clades. Here we use both computer simulation and empirical data analysis to examine the effect of the prior model for internal branch lengths. We found that posterior probabilities for trees and clades are sensitive to the prior for internal branch lengths, and priors assuming long internal branches cause high posterior probabilities for trees. In particular, uniform priors with high upper bounds bias Bayesian clade probabilities in favor of extreme values. We discuss possible remedies to the problem, including empirical and full Bayesian methods and subjective procedures suggested in Bayesian hypothesis testing. Our results also suggest that the bootstrap proportion and Bayesian posterior probability are different measures of accuracy, and that the bootstrap proportion, if interpreted as the probability that the clade is true, can be either too liberal or too conservative.  相似文献   

17.
ABSTRACT: BACKGROUND: A number of software packages are available to generate DNA multiple sequence alignments (MSAs) evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages). RESULTS: We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site), the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. CONCLUSION: The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.  相似文献   

18.
The evolutionary history of a set of species is represented by a phylogenetic tree, which is a rooted, leaf-labeled tree, where internal nodes represent ancestral species and the leaves represent modern day species. Accurate (or even boundedly inaccurate) topology reconstructions of large and divergent trees from realistic length sequences have long been considered one of the major challenges in systematic biology. In this paper, we present a simple method, the Disk-Covering Method (DCM), which boosts the performance of base phylogenetic methods under various Markov models of evolution. We analyze the performance of DCM-boosted distance methods under the Jukes-Cantor Markov model of biomolecular sequence evolution, and prove that for almost all trees, polylogarithmic length sequences suffice for complete accuracy with high probability, while polynomial length sequences always suffice. We also provide an experimental study based upon simulating sequence evolution on model trees. This study confirms substantial reductions in error rates at realistic sequence lengths.  相似文献   

19.
Short phylogenetic distances between taxa occur, for example, in studies on ribosomal RNA-genes with slow substitution rates. For consistently short distances, it is proved that in the completely singular limit of the covariance matrix ordinary least squares (OLS) estimates are minimum variance or best linear unbiased (BLU) estimates of phylogenetic tree branch lengths. Although OLS estimates are in this situation equal to generalized least squares (GLS) estimates, the GLS chi-square likelihood ratio test will be inapplicable as it is associated with zero degrees of freedom. Consequently, an OLS normal distribution test or an analogous bootstrap approach will provide optimal branch length tests of significance for consistently short phylogenetic distances. As the asymptotic covariances between branch lengths will be equal to zero, it follows that the product rule can be used in tree evaluation to calculate an approximate simultaneous confidence probability that all interior branches are positive.  相似文献   

20.
An important issue in the phylogenetic analysis of nucleotide sequence data using the maximum likelihood (ML) method is the underlying evolutionary model employed. We consider the problem of simultaneously estimating the tree topology and the parameters in the underlying substitution model and of obtaining estimates of the standard errors of these parameter estimates. Given a fixed tree topology and corresponding set of branch lengths, the ML estimates of standard evolutionary model parameters are asymptotically efficient, in the sense that their joint distribution is asymptotically normal with the variance–covariance matrix given by the inverse of the Fisher information matrix. We propose a new estimate of this conditional variance based on estimation of the expected information using a Monte Carlo sampling (MCS) method. Simulations are used to compare this conditional variance estimate to the standard technique of using the observed information under a variety of experimental conditions. In the case in which one wishes to estimate simultaneously the tree and parameters, we provide a bootstrapping approach that can be used in conjunction with the MCS method to estimate the unconditional standard error. The methods developed are applied to a real data set consisting of 30 papillomavirus sequences. This overall method is easily incorporated into standard bootstrapping procedures to allow for proper variance estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号