首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.  相似文献   

2.
A new form of cytoplasmic glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) was purified from rat liver by protamine sulfate precipitation, ammonium sulfate fractionation, ion exchange chromatography with diethylaminoethyl cellulose, and affinity chromatography with Cibacron blue agarose and NADP agarose. This form of the enzyme has a specific activity of over 600 units/mg of protein and gives essentially a single band by polyacrylamide gel electrophoresis. The form of the enzyme isolated by this purification method is 3 times more active than the form purified from liver by previously reported procedures. The relative mass of this pure glucose-6-phosphate dehydrogenase enzyme was determined by disc gel electrophoresis to be 269,000. This high activity glucose-6-phosphate dehydrogenase enzyme, after inactivation by reaction with palmityl-CoA, was no longer precipitated by specific rabbit and goat antisera to this purified enzyme. Thus, the possibility still exists that starved fat-refed animals contain glucose-6-phosphate dehydrogenase (G6PD) enzyme protein in an inactivated form no longer detectable by either enzyme activity or immunoprecipitation.  相似文献   

3.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from Lake Van fish (Chalcalburnus tarichii pallas, 1811) liver, using a simple and rapid method, and some characteristics of the enzyme were investigated. The purification procedure was composed of two steps: homogenate preparation and 2', 5'-ADP Sepharose 4B affinity gel chromatography, which took 7-8 hours. Thanks to the two consecutive procedures, the enzyme, having specific activity of 38 EU/mg protein, was purified with a yield of 44.39% and 1310 fold. In order to control the enzyme purification SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. Optimal pH, stable pH, optimal temperature, Km and, Vmax values for NADP+ and glucose 6-phosphate (G6P) were also determined for the enzyme. In addition, molecular weight and subunit molecular weights were found by sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography respectively.  相似文献   

4.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2', 5'-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and KM and Vmax values for NADP+ and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4 degrees C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I50 values were determined from Activity%-[Drug] graphs and Ki values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

5.
In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.  相似文献   

6.
Cloned myo-inositol-1-phpsphate synthase (INOS) of Drosophila melanogaster was expressed in Escherichia coli, and purified using a His-affinity column. The purified INOS required NAD+ for the conversion of glucose-6-phosphate to inositol-1-phosphate. The optimum pH for myo-inositol-1-phosphate synthase is 7.5, and the maximum activity was measured at 40 degrees C. The molecular weight of the native enzyme, as determined by gel filtration, was approximately Mr 271,000 +/- 15,000. A single subunit of approximately Mr 62,000 +/- 5,000 was detected upon SDS-polyacrylamide gel electrophoresis. The Michaelis (Km) and dissociation constants for glucose-6-phosphate were 3.5 and 3.7 mM, whereas for the cofactor NAD+ these were 0.42 and 0.4 mM, respectively.  相似文献   

7.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

8.
Glucose 6-phosphate dehydrogenase (d -glucose 6-phosphate: NADP + oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2′, 5′-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and K M and V max values for NADP + and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4°C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I 50 values were determined from Activity %-[Drug] graphs and K i values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

9.
This paper describes a simple and rapid method for the purification of glucose-6-phosphate dehydrogenase from bovine lens, together with analysis of the kinetic behaviour and some properties of the enzyme. The purification consisted of two steps, 2',5'-ADP-Sepharose 4B affinity chromatography and DEAE Sepharose Fast Flow ion exchange chromatography in procedure which took two working days. The enzyme was obtained with a yield of 13.7% and had a specific activity of 2.64 U/mg protein. The overall purification was about 19,700-fold. The molecular weight of the enzyme was found to be 62 +/- 3 kDa by Sephadex G-200 gel filtration chromatography. A protein band corresponding to a molecular weight of 69.2 +/- 3.2 kDa was obtained on SDS polyacrylamide slab gel electrophoresis. On chromatofocusing, lens glucose-6-phosphate dehydrogenase gave a single peak at pI 5.14. The activation energy of the reaction catalyzed by the enzyme was calculated from Arrhenius plot as Ea = 5.88 kcal/mol. The pH versus velocity curve had two peaks at pH 7.7 and 9.6. By the double-reciprocal plots and the product inhibition studies, it was shown that the enzyme follows 'Ordered Bi Bi' sequential kinetics. From the graphical and statistical analyses, KmNADP+, KmG-6-P, KiNADPH, Ki6-PGA were estimated to be 0.008 +/- 0.002, 0.035 +/- 0.013, 0.173 +/- 0.007 and 1.771 +/- 0.160 mM, respectively. The observed kinetic behaviour of glucose-6-phosphate dehydrogenase from bovine lens was in accordance with the enzyme from other sources.  相似文献   

10.
We have succeeded in purifying to homogeneity a very labile NADP+-linked isocitrate dehydrogenase (isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42) from a strain of alkalophilic Bacillus, by a simple method, with an overall yield over 76% of the original activity. The molecular weight on Sephadex G-200 was around 90,000; and that by electrophoresis on SDS-polyacrylamide gels was about 44,000. The sedimentation coefficient (s020,w) and isoelectric point of the enzyme were determined to be 3.22 S and pH 4.7, respectively. The enzyme required Mn2+ for the reaction and for stability. The optimum pH for the reaction was in the range 7.8-8.4 at 30 degrees C; the optimum temperature at pH 8.0 was 75 degrees C; the activation energy of the reaction was 6.2 kcal/mol. The Km values for threo-Ds-isocitrate, DL-isocitrate, and NADP+ were 5.4 microM, 9.9 microM, and 7.3 microM, respectively. This enzyme was inhibited by NADPH, glyceraldehyde 3-phosphate, 3-phosphoglycerate, phosphoenol pyruvate, cis-aconitate, alpha-ketoglutarate, and oxaloacetate. In addition, it was subject to a concerted inhibition by a combination of glyoxylate and oxaloacetate, and also to a cumulative inhibition by nucleoside triphosphates.  相似文献   

11.
Glucose 6-phosphate dehydrogenase (G6PD) was purified from turkey erythrocytes by ammonium sulphate precipitation and followed by ADP Sepharose affinity gel chromatography. The yield was 49.71% and specific activity of the enzyme was found to be 44.16 EU/mg protein. By gel filtration the molecular mass was found to be 75 kDa. The enzyme had an optimum pH at 9.0, and optimum temperature at 50 degrees C. Km and Vmax for NADP(+) and glucose 6- phosphate (G6-P) as substrates were also determined and effects of inhibitors such as ATP, NADH and NADPH were examined.  相似文献   

12.
A NADPH cytochrome c oxidoreductase purified from membranes of rabbit peritoneal neutrophil was shown to behave as the NADPH dehydrogenase component of the O2- generating oxidase complex. A photoactivable derivative of NADP+, azido nitrophenyl-gamma-aminobutyryl NADP+ (NAP4-NADP+), was synthesized in its labeled [3H] form and used to photolabel the NADPH cytochrome c reductase at different stages of the purification procedure. Control assays performed in dim light indicated that the reduced form of NADP4-NADP+ generated by reduction with glucose-6-phosphate and glucose-6-phosphate dehydrogenase was oxidized at virtually the same rate as NADPH. Upon photoirradiation of the purified reductase in the presence of [3H]NAP4-NADP+ and subsequent separation of the photolabeled species by sodium dodecyl sulfate polyacrylamide gel electrophoresis, radioactivity was found to be present predominantly in a protein band with a molecular mass of 77-kDa and accessorily in bands of 67-kDa and 57-kDa. Evidence is provided that the 67-kDa and 57-kDa proteins arose from the 77-kDa protein by proteolysis. Despite removal of part of the sequence, the proteolyzed proteins were still active in catalyzing electron transport from NADPH to cytochrome c and in binding the photoactivable derivative of NADP+.  相似文献   

13.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

14.
The NAD+-dependent cytosolic glyceralehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) was purified from the skeletal muscle of European pilchard Sardina pilchardus and its physicochemical and kinetic properties were investigated. The purification method consisted of two steps, ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography, resulting in an approximately 78-fold increase in specific activity and a final yield of approximately 25%. The Michaelis constants (Kin) for NAD+ and D-glyceraldehyde-3-phosphate were 92.0 μM and 73.4 μM, respectively. The maximal velocity (Vmax) of the purified enzyme was estimated to be 37.6 U/mg. Under the assay conditions, the optimum pH and temperature were 8.0 and 30 ℃. The molecular weight of the purified enzyme was 37 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Non-denaturing polyacrylamide gels yielding a molecular weight of 154 kDa suggested that the enzyme is a homotetramer. Polyclonal antibodies against the purified enzyme were used to recognize the enzyme in different sardine tissues by Western blot analysis. The isoelectric point, obtained by an isoelectric focusing system in polyacrylamide slab gels, revealed only one GAPDH isoform (pI 7.9).  相似文献   

15.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5′AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of 60 μq of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

16.
Glucose-6-phosphate dehydrogenase was purified from human placenta using DEAE-Sepharose fast flow, 2',5'-ADP Sepharose 4B column chromatography, and chromatofocusing on PBE 94 with PB 74. The enzyme was purified with 62% yield and had a specific activity of 87 units per milligram protein. The pH optimum was determined to be 7.8, using zero buffer extrapolation method. The purified placental glucose-6-phosphate dehydrogenase gave two activity bands on native PAGE: one band, constituting about 3--5% of total activity, moved slower than the remaining 95%. Among the activity bands only the faster moving band gave a band on protein staining. The slower moving band, which probably corresponded to the higher polymeric form of the G6PD with high specific activity, was not seen on native PAGE due to insufficient protein for Coomassie brilliant blue staining. The observation of one band on SDS--PAGE with an M(r) of 54 kDa and a specific activity lower than expected, suggests the presence of both forms of the G6PD, the high polymeric form at low concentration and the inactive form at high concentration, in our preparation. Measuring the activities of placental glucose-6-phosphate dehydrogenase between 20 and 50 degrees C, the activation energy, activation enthalpy, and Q(10) were calculated to be 8.16 kcal/mol, 7.55 kcal/mol, and 1.57, respectively. It was found that human placental G6PD obeys Michaelis-Menten kinetics. K(m) values were determined using the concentration ranges of 20--300 microM for G6P and 10--200 microM for NADP(+). The K(m) value for G6P was 40 microM; the K(m) value NADP(+) was found to be 20 microM. Double-reciprocal plots of 1/Vm vs 1/G6P (at constant [NADP(+)]) and of 1/Vm vs 1/NADP(+) (at constant [G6P]) intersected at the same point on the 1/V(m) axis to give V(m) = 87 U/mg protein.  相似文献   

17.
Glucose-6-phosphate dehydrogenase [d-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 × 10–4 M for glucose-6-phosphate and 2.4 × 10–4 M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucoses-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

18.
Glucose-6-phosphate dehydrogenase (G6PD) was purified from rat small intestine with 19.2% yield and had a specific activity of 53.8 units per miligram protein. The pH optimum was determined to be 8.1. The purified rat small intestinal G6PD gave one activity, one protein band on native PAGE. The observation of one band on SDS/PAGE with an Mr of 48 kDa and a specific activity lower than expected may suggest the proteolytically affected enzyme or different form of G6PD in the rat small intestine. The activation energy, activation enthalpy, Q10, and optimum temperature from Arrhenius plot for the rat small intestinal G6PD were found to be 8.52 kcal/mol, 7.90 kcal/mol, 1.59, and 38 degrees C, respectively. The Km values for G6P and NADP+ were 70.1 +/- 20.8 and 23.2 +/- 7.6 microM, respectively. Double-reciprocal plots of 1/Vm versus 1/G6P (at constant [NADP+]) and of 1/Vm versus 1/NADP+ at constant [G6P]) intersected at the same point on the 1/Vm axis to give Vm = 53.8 U/mg protein.  相似文献   

19.
The gsdA gene of the extreme thermophilic bacterium Aquifex aeolicus, encoding glucose-6-phosphate dehydrogenase (G6PDH), was cloned into a high-expression vector and overexpressed as a fusion protein in Escherichia coli. Here we report the characterization of this recombinant thermostable G6PDH. G6PDH was purified to homogeneity by heat precipitation followed by immobilized metal affinity chromatography on a nickel-chelate column. The data obtained indicate that the enzyme is a homodimer with a subunit molecular weight of 55 kDa. G6PDH followed Michaelis-Menten kinetics with a K(M) of 63 micro M for glucose-6-phosphate at 70 degrees C with NADP as the cofactor. The enzyme exhibited dual coenzyme specificity, although it showed a preference in terms of k(cat)/ K(M) of 20.4-fold for NADP over NAD at 40 degrees C and 5.7-fold at 70 degrees C. The enzyme showed optimum catalytic activity at 90 degrees C. Modeling of the dimer interface suggested the presence of cysteine residues that may form disulfide bonds between the two subunits, thereby preserving the oligomeric integrity of the enzyme. Interestingly, addition of dithiothreitol or mercaptoethanol did not affect the activity of the enzyme. With a half-life of 24 h at 90 degrees C and 12 h at 100 degrees C, this is the most thermostable G6PDH described.  相似文献   

20.
Glutathione reductase (E.C.1.8.1.7; GR) was purified from bovine erythrocytes and some characteristics properties of the enzyme were investigated. The purification procedure was composed of preparation of the hemolysate, ammonium sulfate fractionation, affinity chromatography on 2',5'-ADP Sepharose 4B, and gel filtration chromatography on Sephadex G-200. As a result of four consecutive procedures, the enzyme was purified 31,250-fold with a yield of 11.39%. Specific activity at the final step was 62.5 U (mg proteins)(-1). For the enzyme, optimum pH, optimum temperature, optimum ionic strength, and stable pH were found to be 7.3, 55 degrees C, 435 mM, 7.3, respectively. The molecular weight of the enzyme was found to be 118 kDa by Sephadex G-200 gel filtration chromatography and the subunit molecular weight was found to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In addition, Km and Vmax values were determined for glutathione disulfide (GSSG) and NADPH. Ki constants and inhibition types were established for glutathione (GSH) and NADP+. Also, effects of NADPH and GSSG were investigated on the enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号