首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female‐biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female‐biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory.  相似文献   

2.
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger.  相似文献   

3.
Both monogyne (single queen per colony) and polygyne (multiple queens per colony) populations of the fire ant Solenopsis invicta are good subjects for tests of kin selection theory because their genetic and reproductive attributes are well-characterized, permitting quantitative predictions about the degree to which sex investment ratios should be female-biased if workers and not queens control reproductive allocation. In the study populations, an investment ratio of 3 females: 1 male is predicted (a proportional investment in females of 0.75) in the monogyne form, whereas a proportional investment in females between 0.637 and 0.740 is expected in the polygyne form. To test these predictions, colonies from a single population of each social form were collected and censused during three different seasons. Consistent with their alternative modes of colony founding, monogyne colonies invested more in reproduction (sexual production) and less in growth/maintenance (worker production) than did the polygyne colonies. Overall, the sex investment ratios were female-biased in both forms, although there was considerable seasonal variation. After adjusting for sex-specific energetic costs, the proportional investment in females was 0.607 in the monogyne population, a value in between those expected under complete control by either the queen or the workers. However, when combined with data from four other previously studied monogyne populations in the U.S.A., the mean investment ratio did not differ significantly from the value predicted if workers have exclusive control. In the polygyne population, the proportional investment in females of 0.616 was consistent with the level of female bias expected under partial to complete worker control, although the potential influence of two confounding factors — possible contact with monogyne colonies and the preponderance of sterile diploid males — weakens this conclusion somewhat. Taken as a whole, the sex investment ratios of monogyne and polygyne populations of S. invicta are consistent with at least partial worker control. Of several ultimate and proximate explanations that have been proposed to explain inter-colonial variation in the sex investment ratio, only the effect of the primary sex ratio (female-determined eggs: male-determined eggs) laid by the queen appears to account for the observed variation among monogyne colonies. In the polygyne population, there is limited support for the hypothesis that greater resource abundance favors investment in females.  相似文献   

4.
REPRODUCTIVE SKEW AND SPLIT SEX RATIOS IN SOCIAL HYMENOPTERA   总被引:1,自引:0,他引:1  
Abstract I present a model demonstrating that, in social Hymenoptera, split sex allocation can influence the evolution of reproductive partitioning (skew). In a facultatively polygynous population (with one to several queens per colony), workers vary in their relative relatedness to females (relatedness asymmetry). Split sex‐ratio theory predicts that workers in monogynous (single‐queen) colonies should concentrate on female production, as their relatedness asymmetry is relatively high, whereas workers in the polygynous colonies should concentrate on male production, as their relatedness asymmetry is relatively low. By contrast, queens in all colonies value males more highly per capita than they value females, because the worker‐controlled population sex ratio is too female‐biased from the queens' standpoint. Consider a polygynous colony in a facultatively polygynous population of perennial, social Hymenoptera with split sex ratios. A mutant queen achieving reproductive monopoly would gain from increasing her share of offspring but, because the workers would assess her colony as monogynous, would lose from the workers rearing a greater proportion of less‐valuable females from the colony's brood. This sets an upper limit on skew. Therefore, in social Hymenoptera, skew evolution is potentially affected by queen‐worker conflict over sex allocation.  相似文献   

5.
1. Myrmecina nipponica has two types of colonies: a queen colony type, in which the reproductive females are queens and new colonies are made by independent founding, and an intermorphic female colony type, in which reproductive females belong to a wingless intermediate morphology between queen and worker, and where colonies multiply through colonial budding. 2. The mating frequencies of reproductive females in both types indicate monoandry. The relatedness among nestmates in both types was almost 0.75, however relatedness between mother and daughter in intermorphic female colonies was slightly higher than that of queen colonies. 3. The sex ratio (corrected investment female ratio) was 0.70 at the population level, suggesting that the sex ratio is controlled by workers in this species, however the ratio differed greatly between the two types of colonies. Queen colonies (n = 37) had a female‐biased sex ratio of 0.77 while intermorphic female colonies (n = 33) had a ratio of 0.56. 4. Each reproductive intermorphic female was accompanied by an average of 2.9 workers (including virgin intermorphic females) in the colonial budding, and when the investment to those workers was added to the female investment, the sex ratio reached 0.81. 5. The frequency distribution of sex ratio was bimodal, with many colonies producing exclusively males or females, however mean estimated relatedness within colonies was almost 0.75. These data are inconsistent with the genetic variation hypothesis, which is one of the predominant hypotheses accounting for the between‐colony variation in sex ratio.  相似文献   

6.
Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1-3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony's queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.  相似文献   

7.
The fungal cultivars of fungus‐growing ants are vertically transmitted by queens but not males. Selection would therefore favor cultivars that bias the ants’ sex ratio towards gynes, beyond the gyne bias that is optimal for workers and queens. We measured sex allocation in 190 colonies of six sympatric fungus‐growing ant species. As predicted from relatedness, female bias was greater in four singly mated Sericomyrmex and Trachymyrmex species than in two multiply mated Acromyrmex species. Colonies tended to raise mainly a single sex, which could be partly explained by variation in queen number, colony fecundity, and fungal garden volume for Acromyrmex and Sericomyrmex, but not for Trachymyrmex. Year of collection, worker number and mating frequency of Acromyrmex queens did not affect the colony sex ratios. We used a novel sensitivity analysis to compare the population sex allocation ratios with the theoretical queen and worker optima for a range of values of k, the correction factor for sex differences in metabolic rate and fat content. The results were consistent with either worker or queen control, but never with fungal control for any realistic value of k. We conclude that the fungal symbiont does not distort the ants’ sex ratio in these species.  相似文献   

8.
Because workers in the eusocial Hymenoptera are more closely related to sisters than to brothers, theory predicts that natural selection should act on them to bias (change) sex allocation to favor reproductive females over males. However, selection should also act on queens to prevent worker bias. We use a simulation approach to analyze the coevolution of this conflict in colonies with single, once-mated queens. We assume that queens bias the primary (egg) sex ratio and workers bias the secondary (adult) sex ratio, both at some cost to colony productivity. Workers can bias either by eliminating males or by directly increasing female caste determination. Although variation among colonies in kin structure is absent, simulations often result in bimodal (split) colony sex ratios. This occurs because of the evolution of two alternative queen or two alternative worker biasing strategies, one that biases strongly and another that does not bias at all. Alternative strategies evolve because the mechanisms of biasing result in accelerating benefits per unit cost with increasing bias, resulting in greater fitness for strategies that bias more and bias less than the population equilibrium. Strategies biasing more gain from increased biasing efficiency whereas strategies biasing less gain from decreased biasing cost. Our study predicts that whether queens or workers evolve alternative strategies depends upon the mechanisms that workers use to bias the sex ratio, the relative cost of queen and worker biasing, and the rates at which queen and worker strategies evolve. Our study also predicts that population and colony level sex allocation, as well as colony productivity, will differ diagnostically according to whether queens or workers evolve alternative biasing strategies and according to what mechanism workers use to bias sex allocation.  相似文献   

9.
A single-locus two-allele model is analyzed to determine the invasion conditions for facultative biasing of colony sex allocation by hymenopteran workers in response to queen mating frequency, for a situation in which colonies have a single queen mated to one or two males. Facultative biasing of sex allocation towards increased male production in double mated colonies and increased female production in single mated colonies can both invade when the population sex allocation ratio is at the worker optimum. However, when the population sex allocation ratio is more male biased than the worker optimum, plausibly due to mixed queen and worker control, it is likely that only increased female allocation in colonies perceived by the workers to have single mated queens can invade. In this case, the frequency of mistakes made by workers in assessing queen mating frequency is an important constraint on the invasion of facultative male biasing in colonies perceived to have a double mated queen. When the population sex allocation ratio is not between the optima for workers in single and double mated colonies, plausibly due to strong queen control, then facultative biasing cannot invade. In this situation, workers in all colonies should attempt to bias allocation towards increased females. Worker male production in queenright colonies (provided not all males are worker-derived), unequal sperm use by double mated queens, and the amount of facultative biasing, do not alter these results.  相似文献   

10.
Abstract In a colony headed by a single monandrous foundress, theories predict that conflicts between a queen and her workers over both sex ratio and male production should be intense. If production of males by workers is a function of colony size, this should affect sex ratios, but few studies have examined how queens and workers resolve both conflicts simultaneously. We conducted field and laboratory studies to test whether sex-ratio variation can be explained by conflict over male production between queen and workers in the primitively eusocial wasp Polistes chinensis antennalis.
Worker oviposition rate increased more rapidly with colony size than did queen oviposition. Allozyme and micro-satellite markers revealed that the mean frequency of workers' sons among male adults in queen-right colonies was 0.39 ± 0.08 SE (n = 22). Genetic relatedness among female nestmates was high (0.654–0.796), showing that colonies usually had a single, monandrous queen. The mean sex allocation ratio (male investment/male and gyne investments) of 46 queen-right colonies was 0.47 ± 0.02, and for 25 orphaned colonies was 0.86 ± 0.04. The observed sex allocation ratio was likely to be under queen control. For queen-right colonies, the larger colonies invested more in males and produced reproductives protandrously and/or simultaneously, whereas the smaller colonies invested more in females and produced reproductives protogynously. Instead of positive relationships between colony size and worker oviposition rate, the frequency of workers' sons within queen-right colonies did not increase with colony size. These results suggest that queens control colony investment, even though they allow worker oviposition in queen-right colonies. Eggs laid by workers may be policed by the queen and/or fellow workers. Worker oviposition did not influence the outcome of sex allocation ratio as a straightforward function of colony size.  相似文献   

11.
The local resource competition (LRC) hypothesis predicts thatwherever philopatric offspring compete for resources with theirmothers, offspring sex ratios should be biased in favor of thedispersing sex. In ants, LRC is typically found in polygynous(multiple queen) species where foundation of new nests occursby budding, which results in a strong population structure anda male-biased population-wide sex ratio. However, under polygyny,the effect of LRC on sex allocation is often blurred by theeffect of lowered relatedness asymmetries among colony members.Moreover, environmental factors, such as the availability ofresources, have also been shown to deeply influence sex ratioin ants. We investigated sex allocation in the monogynous (singlequeen) ant Cataglyphis cursor, a species where colonies reproduceby budding and both male and female sexuals are produced throughparthenogenesis, so that between-colony variations in relatednessasymmetries should be reduced. Our results show that sex allocationin C. cursor is highly male biased both at the colony and populationlevels. Genetic analyses indicate a significant isolation-by-distancein the study population, consistent with limited dispersal offemales. As expected from asexual reproduction, only weak variationsin relatedness asymmetry of workers toward sexual offspringoccur across colonies, and they are not associated with colonysex ratio. Inconsistent with the predictions of the resourceavailability hypothesis, the male bias significantly increaseswith colony size, and investment in males, but not in females,is positively correlated with total investment in sexuals. Overall,our results are consistent with the predictions of the LRC hypothesisto account for sex ratio variation in this species.  相似文献   

12.
The best known of the conflicts occurring in eusocial Hymenoptera is queen-worker conflict over sex ratio. So far, sex ratio theory has mostly focused on optimal investment in the production of male versus female sexuals, neglecting the investment in workers. Increased investment in workers decreases immediate sexual productivity but increases expected future colony productivity. Thus, an important issue is to determine the queen's and workers' optimal investment in each of the three castes (workers, female sexuals, and male sexuals), taking into account a possible trade-off between production of female sexuals and workers (both castes developing from diploid female eggs). Here, we construct a simple and general kin selection model that allows us to calculate the evolutionarily stable investments in the three castes, while varying the identity of the party controlling resource allocation (relative investment in workers, female sexuals, and male sexuals). Our model shows that queens and workers favor the investment in workers that maximizes lifetime colony productivity of sexual males and females, whatever the colony kin structure. However, worker production is predicted to be at this optimum only if one of the two parties has complete control over resource allocation, a situation that is evolutionarily unstable because it strongly selects the other party to manipulate sex allocation in its favor. Queens are selected to force workers to raise all the males by limiting the number of eggs they lay, whereas workers should respond to egg limitation by raising a greater proportion of the female eggs into sexual females rather than workers as a means to attain a more female-biased sex allocation. This tug-of-war between queens and workers leads to a stable equilibrium where sex allocation is between the queen and worker optima and the investment in workers is below both parties' optimum. Our model further shows that, under most conditions, female larvae are in strong conflict with queens and workers over their developmental fate because they value their own reproduction more than that of siblings. With the help of our model, we also investigate how variation in queen number and number of matings per queen affect the level of conflict between queens, workers, and larvae and ultimately the allocation of resource in the three castes. Finally, we make predictions that allow us to test which party is in control of sex allocation and caste determination.  相似文献   

13.
Insect workers can increase their inclusive fitness by biasing colony sex allocation towards males when their mother queen is mated to multiple males and females when she is singly mated. Workers need heritable variation in odour diversity to assess queen mating frequency. Here we present a simple one-locus two-allele model, which shows that the sex ratio specialization itself will often select against rare alleles that would provide additional information for the assessment of queen mating frequency. However, under certain rather restricted conditions, such as when sex ratios are highly female biased, and when worker reproduction is rare, sex ratio specialization can select for rare alleles. This suggests that sex allocation biasing by workers will usually reduce the very information that workers need to assess queen mating frequency. Our model is an example where an explicit treatment of underlying genetics and mechanisms of behaviour, such as information use, is necessary to fully understand the evolution of an adaptive behavioural strategy.  相似文献   

14.
Fisher's theory of the sex ratio may be extended to the social Hymenoptera; this extension must consider the unusual genetic structure of the Hymenoptera. Queens, workers, and laying workers generally have different equilibrial sex ratios of offspring and different equilibrial ratios of investment in offspring of the two sexes; these differences are the consequence of asymmetries in the degrees of relatedness between the queen, a worker, and a laying worker to male and female offspring. The equilibrial ratios of investment for the queen, a worker, and a laying worker are derived by finding the relative expected reproductive successes of genes in males and in reproductive females.  相似文献   

15.
Sex-ratio conflict between queens and workers was explored in a study of colony sex ratios, relatedness, and population investment in the ant Pheidole desertorum. Colony reproductive broods consist of only females, only males, or have a sex ratio that is extremely male biased. Colonies producing females (female specialists) and colonies producing males (male specialists) occur at near equal frequency in the population. Most colonies apparently specialize in producing one reproductive sex throughout their life. Allozyme analyses show that relatedness does not differ within male-specialist and female-specialist colonies and they do not appear to differ in available resources. In the population, workers are nearly three times more closely related to females than males; however, the investment sex ratio is near equal (1.01, female/male), which is consistent with queen control. Selection should be strong on workers to increase investment in reproductive females, so why do workers in male-specialist colonies produce only (or nearly only) males? One hypothesis is that queens in male-specialist colonies prevent the occurrence of reproductive females, perhaps by producing worker-biased female eggs. An earlier simulation study of genetic evolution of sex ratios in social Hymenoptera (Pamilo 1982b) predicts that such mechanisms can result in the evolution of bimodal colony sex ratios and queen control. Results on P. desertorum are generally consistent with that study; however, information is not currently available to test some of the model's predictions and assumptions.  相似文献   

16.
Models of sex‐allocation conflict are central to evolutionary biology but have mostly assumed static decisions, where resource allocation strategies are constant over colony lifespan. Here, we develop a model to study how the evolution of dynamic resource allocation strategies is affected by the queen‐worker conflict in annual eusocial insects. We demonstrate that the time of dispersal of sexuals affects the sex‐allocation ratio through sexual selection on males. Furthermore, our model provides three predictions that depart from established results of classic static allocation models. First, we find that the queen wins the sex‐allocation conflict, while the workers determine the maximum colony size and colony productivity. Second, male‐biased sex allocation and protandry evolve if sexuals disperse directly after eclosion. Third, when workers are more related to new queens, then the proportional investment into queens is expected to be lower, which results from the interacting effect of sexual selection (selecting for protandry) and sex‐allocation conflict (selecting for earlier switch to producing sexuals). Overall, we find that colony ontogeny crucially affects the outcome of sex‐allocation conflict because of the evolution of distinct colony growth phases, which decouples how queens and workers affect allocation decisions and can result in asymmetric control.  相似文献   

17.
The relative power of queens and workers at controlling sex allocation in the ant Colobopsis nipponicus is investigated in this study. Results show that C. nipponicus completely satisfies Hamilton's assumptions concerning colony social structure: monogyny, monoandry, and no worker reproduction. A genetic survey of the population structure rejects possibilities of local mate competition, local resource enhancement, and local resource competition, which all can bias population-allocation ratios from 0.5. Although these factors are absent, the observed sex-allocation ratio (male investment/total sexual investment; 0.250 ± 0.027) is significantly biased toward females and is not different from the estimated optimal ratio for workers (0.252). Thus, it appears that workers are likely to win in conflicts over sex allocation with queens.  相似文献   

18.
Summary. We analyzed the impact of ecological parameters, such as nest density and nest site availability, on colony organization and investment patterns in two populations of the ant Temnothorax crassispinus, a parapatric sibling species of the well-studied T. nylanderi (Temnothorax was until recently referred to as Leptothorax (Myrafant); Bolton, 1993). As in T. nylanderi, sex allocation ratios were strongly associated with total sexual reproduction, i. e., nests with large sexual investment produced mainly female sexuals. Furthermore, nest site quality affected sex allocation ratios, with colonies from ephemeral nest sites producing a more male-biased sex allocation ratio than colonies from sturdy nest sites. In contrast to T. nylanderi, workers in colonies of T. crassispinus were mostly fullsisters both in a dense and a sparsely populated area, suggesting that colony fusion and colony usurpation are rare in this species. In addition, the presence of a queen in a local nest unit strongly influenced sex ratio decisions, in that these nests raised a more male biased allocation ratio compared to queenless nests. This also suggests that colony structure is more stable in T. crassispinus than in T. nylanderi. We conclude that sibling species, though often very similar in their morphology and ecological requirements, may nevertheless react very differently to ecological variation.Received 11 December 2003; revised 4 March 2004; accepted 19 April 2004.  相似文献   

19.
Split sex ratio—a pattern where colonies within a population specialize in either male or queen production—is a widespread phenomenon in ants and other social Hymenoptera. It has often been attributed to variation in colony kin structure, which affects the degree of queen–worker conflict over optimal sex allocation. However, recent findings suggest that split sex ratio is a more diverse phenomenon, which can evolve for multiple reasons. Here, we provide an overview of the main conditions favouring split sex ratio. We show that each split sex-ratio type arises due to a different combination of factors determining colony kin structure, queen or worker control over sex ratio and the type of conflict between colony members.  相似文献   

20.
Reproductive alliances and posthumous fitness enhancement in male ants   总被引:2,自引:0,他引:2  
Ants provide excellent opportunities for studying the evolutionary aspects of reproductive conflict. Relatedness asymmetries owing to the haplodiploid sex determination of Hymenoptera create substantial fitness incentives for gaining control over sex allocation, often at the expense of the fitness interests of nest-mates. Under worker-controlled split sex ratios either the reproductive interests of the mother queen (when workers male bias the sex ratio) or the father (when workers female bias the sex ratio), but never that of both parents simultaneously, are fulfilled. When workers bias sex ratios according to the frequency of queen mating, males which co-sire a colony have a joint interest in manipulating their daughter workers into rearing a more female-biased sex ratio. Here we show that males of the ant Formica truncorum achieve such manipulation by partial sperm clumping, so that the cohort-specific relatedness asymmetry of the workers in colonies with multiple fathers is higher than the cumulative relatedness asymmetry across worker cohorts. This occurs because a single male fathers the majority of the offspring within a cohort. Colonies with higher average cohort-specific relatedness asymmetry produce more female-biased sex ratios. Posthumously expressed male genes are thus able to oppose the reproductive interests of the genes expressed in queens and the latter apparently lack mechanisms for enforcing full control over sperm mixing and sperm allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号