首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EGF has been shown to augment albumin and apolipoprotein A-I secretion by cynomolgus monkey hepatocytes in primary culture without stimulating cell division. This study was undertaken to determine what effect EGF had on apo B secretion by those hepatocytes. The results indicate that EGF (3 nM final concentration) severely inhibits the rate at which apo B accumulates in the culture medium of primate hepatocytes. That effect was evident within 48 hours of treatment, and by 72 hours the rate that apo B accumulated was less than half that of cells treated with a hormone-free medium. However, the apo B mRNA levels in the EGF-treated cells were more than double those of hepatocytes given the hormone-free medium. These data indicate that EGF has a potent effect on the rate at which apo B accumulates in the culture medium of primate hepatocytes and that the effect is independent of apo B gene expression.  相似文献   

2.
Morphologically intact rat hepatocytes separated by collagenase perfusion were cultured in L-15/fetal calf serum medium to form a monolayer. Thereafter the hepatocytes were grown in serum-free L-15 medium in which they produced and continuously released plasma proteins. The secreted plasma proteins were collected, separated and characterized by crossed immunoelectrophoresis. Most of the newly biosynthesized plasma proteins secreted into the medium during incubation for thirty hours had the same electrophoretic mobility, antigenicity and staining characteristics as their counterparts in rat serum. The addition of tritium labelled amino acid mixture to the culture medium revealed that the release of radioactively labelled plasma proteins into the culture medium was essentially linear during the thirty hour incubation period. However, saturation of the intracellular pool took place after ca. ten hours of incubation. Addition of leukocytic endogenous mediator, LEM, to cultures of rat hepatocytes caused a profound increase in the relative concentration of acute-phase proteins secreted into the culture medium.  相似文献   

3.
Effects of EGF and calcium on adult parenchymal hepatocyte proliferation   总被引:3,自引:0,他引:3  
Adult rat hepatocytes were grown in serum-free medium containing 0.05-4 mM Ca++ and 40 ng/ml EGF. After 48 hours of cultivation the mitotic index and the percentage of second division metaphases were determined. The results demonstrated a maximum proliferation response to EGF at a Ca++ concentration of 0.4 mM. With lower and higher external Ca++ concentrations the fraction of cells undergoing more than one cell division decreased. At lower Ca++ concentrations this decrease appears to result from a reduced viability. In contrast, the low response to EGF at higher Ca++ concentrations--especially in the physiological range--may reflect the influence of Ca++ on the state of hepatocyte differentiation.  相似文献   

4.
A low concentration (10(-11) mol/l) of epidermal growth factor (EGF) and/or an equimolar (10(-14) mol/l) mixture of glucagon and insulin stimulated DNA synthesis in hepatocytes in 4-day-old primary cultures of neonatal rat liver. EGF seems to have acted by inducing quiescent hepatocytes to begin cycling, while the glucagon-insulin combination seems to have acted mainly by shortening the cell cycle time. Incubation in low calcium medium blocked untreated hepatocytes in the G1 phase of their cycle and prevented EGF and the glucagon-insulin mixture from stimulating DNA synthesis. Nevertheless, hepatocytes in calcium-deficient medium did respond to these agents, as they reached a late stage of prereplicative development before being blocked: in fact, they initiated DNA synthesis soon after the addition of calcium. EGF, but not the glucagon-insulin combination, also enabled the already cycling hepatocytes (but not the newly activated ones) to overcome the block imposed by the extracellular calcium deficiency after a delay of several hours.  相似文献   

5.
Effect of epidermal growth factor on cultured adult rat hepatocytes   总被引:1,自引:0,他引:1  
When adult rat hepatocytes were cultured in plastic Petri dishes in a medium containing insulin and glucagon, supplementation with epidermal growth factor (EGF) had a pronounced effect on their viability, morphology, and biochemical integrity. Transmission and scanning electron microscopic studies showed that after 1 week cells denied EGF accumulated numerous non-electron-dense bodies and filamentous whorls, had irregular nuclei, and exhibited atypical cell surfaces. In contrast, cells grown for 2-3 weeks in the presence of EGF had well-preserved cellular organelles and remained as an epithelial-like monolayer. After 3 weeks EGF-exposed cultures were still inducible for liver-specific tyrosine aminotransferase, and both rat albumin and rat transferrin were recoverable from the culture medium. Virtually no viable cells were present at 3 weeks in EGF-deprived cultures.  相似文献   

6.
The effect of cryopreservation on the proliferative response of fresh and cryopreserved (CP) rat and mouse hepatocytes was studied. Of the parameters measured, incorporation of 3H-thymidine and bromodeoxyuridine (BdrU) incorporation were the most sensitive and LDH content was the least sensitive. The optimal seeding density for epidermal growth factor (EGF)-stimulated proliferative response in fresh rat and mouse hepatocytes was 1.8 x 10(4) cells/cm2 and 2.1 x 10(4) cells/cm2, respectively. 3H-thymidine incorporation by fresh rat and mouse hepatocytes was maximal in cultures treated with 10 and 5 ng/ml EGF, respectively. The cell attachment of fresh rat hepatocytes after 48 h was higher (68%) than CP (42%), therefore, the CP hepatocyte seeding density was increased to 7.1 x 10(4) cells/cm2 so that the cell number after 48 h was the same as fresh hepatocytes. Using the adjusted seeding density, the 3H-thymidine and BdrU incorporation into fresh and CP rat hepatocytes was equivalent. The attachment efficiencies of fresh and CP mouse hepatocytes were the same, therefore, no adjustment was needed. The proliferative response (3H-thymidine incorporation and DNA content) to EGF was the same in fresh and CP mouse hepatocytes. The comitogen, norepinephrine (NE), increased the proliferative response to EGF to the same extent in both fresh and CP rat hepatocytes. In summary, cryopreserved rat and mouse hepatocytes retain their ability to proliferate in culture. Adjustment and monitoring of the seeding density is of high importance, especially with rat hepatocytes, which lose some attachment capacity after cryopreservation. The secondary mitogenic effect of NE is also retained by cryopreserved rat hepatocytes, suggesting that these cells retain alpha1-receptor function.  相似文献   

7.
Multiple rounds of cell division were induced in primary cultured rat hepatocytes in serum-free, modified L-15 medium supplemented with 20 mM NaHCO3 and 10 ng/ml EGF in a 5% CO2/95% air incubator. A 150% increase in cell number and DNA content was observed between day 1 and day 5. The time course of DNA synthesis of hepatocytes cultured in L-15 medium differed from that in DMEM/F12 medium in that there were four peaks of 3H-thymidine incorporation in the L-15 medium, at 60 h, 82 h, 96 h, and 120 h, but only one peak at 48 h in modified DMEM/F12 medium. Labeling studies of the hepatocytes indicated that more than 60% of the cells were stained with antibromodeoxyuridine (BrdU) antibody in the periods of 48-72 h and 72-96 h after plating at densities between 1.5 x 10(5) and 6.0 x 10(5) cells per 35-mm dish. Even at a density of 9.0 x 10(5) cells/dish, about 40% of the cell nuclei were stained with BrdU in the periods of 48-72 h and 72-96 h. In addition, about 20% of the hepatocytes in culture initiated a second round of the cell cycle between 48 and 96 h in culture. Proliferating cells, which were mononucleate with a little cytoplasm, appeared in small clusters or colonies in the culture from day 4. These proliferating cells produced albumin. The addition of essential amino acids to the DMEM/F12 medium enhanced the DNA synthesis of hepatocytes, thus indicating that the higher level of amino acids in L-15 medium may be an important factor in its enhanced ability to support the proliferation of primary cultured rat hepatocytes.  相似文献   

8.
Significant levels of collagenase activity have been found in extracts of isolated rat hepatocytes, but not in extracts of rat liver. Hepatocytes prepared by perfusion of liver with 125I-clostridial collagenase and washed repeatedly retained significant amounts of the radiolabeled proteases. During the first 24–48 hours of primary culture of the hepatocytes, the contaminating clostridial collagenase was rapidly inactivated and degraded as judged first, by loss of collagenase activity from both cell extracts and culture medium; and second, by release of 125I into the medium largely in the form of iodinated small peptides.  相似文献   

9.
We investigated the effects of microbial protease inhibitors, in particular the aminopeptidase inhibitor bestatin, on DNA synthesis and cell division induced by epidermal growth factor (EGF) in hepatocytes. Although bestatin did not significantly affect binding of EGF to hepatocytes, it inhibited EGF-induced DNA synthesis and cell division. DNA synthesis in rat hepatocytes was maximal 24-26 h after EGF addition to the medium. The time required for maximal DNA synthesis was not affected if bestatin was removed less than 12 h after addition, but synthesis was partially inhibited if bestatin was added to the medium several hours after EGF addition, depending on the time of bestatin addition. Our results suggest that bestatin arrests the new cell cycle induced by EGF at about 12 h after the initiation. Considering also our results obtained by employing other protease inhibitors, we concluded that specific proteases play important roles in hepatocyte DNA synthesis and cell division induced by EGF.  相似文献   

10.
Summary Induction of hepatocyte DNA synthesis in culture by cyproterone acetate (CPA), a potent hepatomitogen in vivo, was studied. Adult rat hepatocytes were grown on collagen gels in primary culture for 3 to 10 d. Epidermal growth factor (EGF) was used as a model inducer to establish appropriate culture conditions. (a) In serum-free medium EGF stimulated a wave of DNA synthesis in 10 to 30% of the hepatocytes. CPA had only a weak effect. (b) Increasing concentrations of newborn bovine serum (NBS) at 5 to 95% progressively inhibited the stimulatory effect of EGF. A similar inhibition was obtained by adding bovine serum albumin; 20% NBS, however, had a slightly stimulatory effect on the induction of DNA synthesis by CPA. (c) Portal rat serum (RS) at concentration of 5 to 95% markedly stimulated DNA synthesis, a plateau being reached between 20 and 95%. EGF had a distinct enhancing effect on DNA synthesis in the presence of 5 and 20% RS but not at 50 and 95%. CPA stimulated DNA synthesis in the presence of 20, 50, and 95% RS in a synergistic way. (d) Mitoses were found after treatment with EGF or with CPA. These results show that CPA can induce DNA synthesis in cultured hepatocytes and that RS contains factors facilitating the response to CPA. This study was supported by Gesellschaft für Strahlen-und Umweltforschung mbH, München, Germany.  相似文献   

11.
H-ras gene is expressed at the G1 phase in primary cultures of hepatocytes   总被引:1,自引:0,他引:1  
The expression of c-H-ras and proliferating cell nuclear antigen (PCNA) in primary cultures of rat hepatocytes was determined in order to elucidate the relationship between the c-H-ras gene and the S phase of the cell cycle. In cells treated with EGF, elevation of c-H-ras expression was detected at the 22nd, 34th, 44th, and 54th h after plating, PCNA expression and DNA synthesis were detected at the 44th and 54th h. In cells without EGF treatment, only c-H-ras expression was detected at the 44th and 54th h. In our previous report, we showed that c-myc expression increased within several hours after plating, suggesting that isolated hepatocytes traverse from G0 to G1 under culture conditions, regardless of EGF treatment. These results clearly showed that the c-H-ras gene of adult rat hepatocytes was expressed in the mid-to-late G1 phase of the cell cycle as well as in the early S phase in primary culture.  相似文献   

12.
摘要 目的:比较鼠尾胶与多聚赖氨酸对大鼠肝实质细胞体外培养的影响。方法:分别采用鼠尾胶与多聚赖氨酸包被同一块培养板,然后将从大鼠肝脏中分离出来的肝实质细胞,接种到包被好的培养板中。于接种前(0 h),接种后体外培养24 h、72 h显微镜下观察细胞贴壁与形态变化情况。结果:接种前(0 h)可见新鲜分离的肝实质细胞呈圆形,明亮,有立体感,轮廓完整,层次清楚;体外培养24 h后两种粘附剂包被的同一块培养板中,均可观察到肝实质细胞正常生长,且细胞形态由圆形转变为多角形,并且融合聚集,胞体变平整,贴壁情况区别不大;培养72 h后细胞间开始出现连接,大部分肝细胞呈现出双核或多核,并且多聚赖氨酸包被的培养板中可见大量肝细胞呈岛屿状,已完全贴壁于培养板上。结论:多聚赖氨酸作为包被材料更有利于肝实质细胞贴壁生长以及保持细胞固有形态。  相似文献   

13.
Previous studies show that acute choline deficiency (CD) triggers apoptosis in cultured rat hepatocytes (CWSV-1 cells). We demonstrate that prolonged EGF stimulation (10 ng/mL x 48 hrs) restores cell proliferation, as assessed by BrdU labeling, and protects cells from CD-induced apoptosis, as assessed by TUNEL labeling and cleavage of poly(ADP-ribose) polymerase. However, EGF rescue was not accompanied by restoration of depleted intracellular concentrations of choline, glycerphosphocholine, phosphocholine, or phosphatidylcholine. In contrast, we show that EGF stimulation blocks apoptosis by restoring mitochondrial membrane potential (Delta Psi(m)), as determined using the potential-sensitive dye chloromethyl-X-rosamine, and by preventing the release and nuclear localization of cytochrome c. We investigated whether EGF rescue involves EGF receptor phosphorylation and activation of the down-stream cell survival factor Akt. Compared to cells in control medium (CT, 70 micromol choline x 48 hrs), cells in CD medium (5 micromol choline) were less sensitive to EGF-induced (0-300 ng/mL x 5 min) receptor tyrosine phosphorylation. Compared to cells in CT medium, cells in CD medium treated with EGF (10 ng/mL x 5 min) exhibited higher levels of phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of AktSer473. Inactivation of PI3K was sufficient to block EGF-stimulated activation of Akt, restoration of mitochondrial Delta Psi(m), and prevention of cytochrome c release. These studies indicate that stimulation with EGF activates a cell survival response against CD-apoptosis by restoring mitochondrial membrane potential and preventing cytochrome c release and nuclear translocation which are mediated by activation of Akt in hepatocytes.  相似文献   

14.
Adult rat hepatocytes aggregated to form floating multicellular spheroids when cultured in Primaria dishes, which have a positively charged surface, in serum-free Williams' medium E (WE) supplemented with insulin and epidermal growth factor (EGF). These hormones were essential for maintenance of the spheroids, whereas the size of the spheroids depended on the inoculum cell density. The spheroids retained in vivo levels of expressions of albumin and glucokinase and synthesized scarcely any DNA even in the presence of insulin and EGF. On transfer to type I collagen-coated dishes, the spheroids gradually disaggregated and the cells formed monolayers, in which the expressions of albumin and glucokinase were suppressed and DNA synthesis and hexokinase activity were increased. DNA synthesis of hepatocytes in monolayer culture was maximal 24 hr after transfer of the spheroids, ~80% of the hepatocyte nuclei were labelled with bromodeoxyuridine during culture for 48 hr, and the mitotic index was ~70% after 60 hr. These results suggest that, in spheroids, hepatocytes remained in the G0 phase, but that when they formed monolayers, they progressed to the G1 phase and proceeded through the cell cycle in the presence of insulin and EGF. This work shows that the cell cycle of hepatocytes in culture can be manipulated by providing conditions for quiescence as spheroids or growth as monolayers and that the shape of hepatocytes is important for regulating their growth and liver-specific functions. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Epidermal growth factor (EGF) added in a single dose (between 10–16 and 1.7 ± 10–9M) to neonatal rat hepatocytes in primary culture with subsequent incubation for 12 and 24 hours in Eagle's MEM fortified with 10% (v/v) FBS stimulated their entry into S and M phases, as shown by (3H)thymidine labeling and autoradiography and by a 1-hour exposure to colchicine (0.1 mM). Growth stimulation by EGF was detectable after 4 hours, peaking between 12 and 16 hours, and thereafter declining in intensity. Rat hepatocytes exposed for 72 hours (between the fourth and the seventh day in vitro) to no serum or to 10% fresh FBS possessed similar growth rates and absolute numbers in the cultures. A 24-hour exposure to 20 to 50% FBS stimulated hepatocytic DNA synthesis and mitotic activity and resulted (except for the 50% FBS treatment) in increased hepatocytes' numbers, which were relatively greater than the concurrent increases in connective tissue cell numbers. In serum-devoid medium EGF (10–11M) enhanced hepatocytic mitotic, but not DNA-synthetic activity. To be fully effective EGF required a 10% FBS addition to the medium, then eliciting within 24 hours a marked increase in hepatocytes' number with respect to cultures incubated with 10% serum only. When associated with 20 to 30% FBS, EGF stimulated parenchymal cell growth at rates slightly higher, but not significantly different, than those elicited by the same serum concentrations alone. However, when used in conjunction with 10 to 30% FBS, EGF preferentially increased the number of hepatocytes rather than that of non-parenchymal cells. Moreover, comparative proliferation kinetic studies showed that in the presence of 10% FBS, an equimolar (10–14M) mixture of EGF, insulin, and glucagon promoted an early and marked increase in the DNA-synthetic and mitotic activities of hepatocytes, which peaked after 8 hours. Within a 24-hour time lag this growth stimulation was as effective in increasing the final hepatocytes' number as was a 1000-fold higher EGF concentration, and was twice as active as either an equimolar (10–14M) mixture of the two pancreatic hormones or EGF by itself at 10–14M. These results show that the growth-promoting effect of EGF on primary neonatal rat hepatocytes is modulated by serum factor(s) and can be additively amplified by the simultaneous administration of subphysiological doses of glucagon and insulin.  相似文献   

16.
Summary Bicarbonate in the culture medium is essential for DNA synthesis of primary cultured rat hepatocytes stimulated by epidermal growth factor (EGF). When primary cultured hepatocytes in supplemented Leibovitz L15 medium were placed in a 100% air incubator, no increase in DNA synthesis was observed even after stimulation by EGF. However, when these cells were cultured with NaHCO3 and EGF and placed in a 5% CO2:95% air incubator, a stimulus of DNA synthesis more than 10-fold greater than in cultures in air only was seen, and many mitotic figures could be identified. Furthermore, NaHCO3 added to supplemented DMEM/F12 medium enhanced the DNA synthesis of primary cultured rat hepatocytes in this medium. The ideal pH of the medium for DNA synthesis of cultured hepatocytes was in the range of 7.6 to 8.0. A dose response of NaHCO3 in several media showed that DNA synthesis of the cells increased as the concentration of NaHCO3 increased and that 25 to 30 mM NaHCO3 in the medium was optimal for the replication of DNA by primary cultured rat hepatocytes. The investigations described in this study were supported in part by grants CA-07175, CA-22484, and CA-45700 from the National Cancer Institute, Bethesda, MD.  相似文献   

17.
Primary cultures of adult rat hepatocytes, grown in modified minimal essential medium (Eagle's) containing 10% calf serum, could be induced into DNA replication by combinations of epidermal growth factor (EGF), insulin and glucagon. The three hormones acted synergistically, and cells began entering DNA synthesis 48 h after hormone addition. The ability of the hormones to stimulate DNA synthesis was enhanced by plating cells at high cell concentrations or by conditioned medium, and was diminished by daily medium change. The contribution of glucagon to DNA synthesis was replaced by cAMP plus 1-methyl, 3-isobutyl xanthine or by adrenergic agents. Evidence is presented which suggests that all three hormones are required on the first day of culture, and that EGF and insulin are also required after the first day. This appears to be a useful system for studies on the hormonal initiation of growth in quiescent cells.  相似文献   

18.
We have investigated the influences that nonparenchymal cells from regenerating rat liver exert on hepatocyte proliferation. When primary adult rat hepatocytes isolated from resting liver were co-cultured with nonparenchymal cells (NPCs) from resting liver of a different syngeneic animal, the proliferative response of hepatocytes to epidermal growth factor (EGF) was unaffected by the presence of NPCs. In the presence of NPCs taken from livers that had undergone partial hepatectomy 24 hours before (regen-NPCs), the response of hepatocytes from resting liver to EGF, TGF-alpha, and hepatocyte growth factor (HGF) was markedly inhibited. Inhibitory activity was not dependent on cell-to-cell contact, and conditioned-medium from regen-NPCs, but not normal NPCs, inhibited EGF-induced hepatocyte DNA synthesis by approximately 50%. After concentration by gel chromatography and lyophilisation, inhibition was 98%. The inhibitory activity migrated on SDS-PAGE gel electrophoresis with an apparent molecular weight of 14 to 17 kDa and was trypsin-sensitive but relatively heat-stable. The effects of blocking antibodies established that it was not TGF-beta 1, IL1-beta, or IL6. Investigations of regen-NPCs taken at different time points demonstrated that inhibitory activity was released into conditioned medium of cells harvested at 24 and 48 hours after partial hepatectomy, but not 10 or 72 hours. This powerful inhibitor of hepatocyte response to proliferogens is released by cultures of NPCs with a time course suggesting that it may be involved in terminating the surge of hepatocyte replication induced by partial hepatectomy.  相似文献   

19.
20.
In the present study we have compared the growth potential of hepatocytes from rats and pigs and the influence of cocultivation between these hepatocytes and the rat liver epitheloid cell line RL-ET-14. Proliferation, i.e., DNA synthesis, was detected by autoradiography after exposure to [3H]thymidine. Rat hepatocytes cultured at low cell density showed a very low basal growth and responded to epidermal growth factor (EGF) and insulin by a considerable increase in DNA synthesis after 48 h leading to a labeling index (LI) of 33%. Cocultivation with RL-ET-14 cells almost completely blocked the basal as well as the growth factor stimulated proliferation of the rat hepatocytes. In contrast, pig hepatocytes cultured alone showed a much greater growth potential (basal: LI 11%; insulin/EGF:LI 67%) than rat hepatocytes and were further stimulated by cocultivation (basal: LI 39%; insulin/EGF: LI 89%). Density-dependent inhibition of cell growth was less pronounced with pig hepatocytes. Even after reaching confluency, they showed further strong proliferation in pure as well as in cocultures whereas the LI of the rapidly growing clone RL-ET-14 decreased to 40%. Use of conditioned medium from RL-ET-14 cells did not mimic the growth inhibition of rat hepatocytes in coculture indicating that no soluble growth inhibitors produced by the epitheloid cells are responsible for this effect. In particular, the differences between rat and pig hepatocytes in coculture are not simply due to production of TGF-beta by the epitheloid cells since the hepatocytes from both species were inhibited by TGF-beta to a similar extent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号