首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far‐red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR‐mediated increases in leaf area, with reduced low R:FR‐mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor‐like kinase ERECTA.  相似文献   

2.
  • In the model species Arabidopsis thaliana phytochromes mediate dormancy and germination responses to seasonal cues experienced during seed maturation on the maternal plants. However, the effect of the maternal light environment on seed germination in native wild species has not been well studied. This is particularly important given its practical application in the context of environmental restoration, when there can be marked changes in the canopy.
  • Plants of Primula vulgaris were grown in the field over two vegetative seasons under four shading treatments from low to high ratio of red to far‐red light (R:FR). Leaf and seed traits were assessed in response to the light treatments. The germination of seeds from these four maternal environments (pre‐dispersal) was investigated at seven light and five temperature treatments (post‐dispersal).
  • Thinner leaves, larger leaf area and greater chlorophyll content were found in plants growing in reduced R:FR. Shading in the maternal environment led to increased seed size and yield, although the conditions experienced by the maternal plants had no effect on seed germination. Seeds responded strongly to the cues experienced in their immediate germination environment. Germination was always enhanced under higher R:FR conditions.
  • The observed phenotypic trait variation plays a major role in the ability of P. vulgaris to grow in a wide range of light conditions. However, the increased germination capacity in response to a higher R:FR for all maternal environments suggests potential for seedling establishment under vegetative shade only in the presence of canopy gaps.
  相似文献   

3.
1. Seeds from artificial selection lines were exposed to different maternal and ambient conditions, simulating sunlight and vegetation shade.
2. Lines selected for longer leaves also produced larger seeds, indicating a positive genetic correlation between leaf length and seed size.
3. Light conditions during maturation had no large effect on seed size.
4. Seed germination was reduced by a low ratio of red to far-red light (R/FR ratio) in the ambient environment.
5. Seeds maturated under simulated vegetation shade germinated less readily and were more inhibited by a low ambient R/FR ratio than seeds maturated under full sunlight or R/FR-neutral shade. Thus, low R/FR-ratios in the maternal and ambient environment operated synergistically.
6. Large genotypic variation in the germination responses to both maternal and ambient light conditions was found among and within selection lines, indicating that such responses might have the potential to evolve in response to natural selection.
7. Artificial selection for leaf length had affected seed germination characteristics but correlated responses and thus genetic correlations largely depended on light conditions in the selective environment. Selection for longer leaves under a low R/FR ratio increased seed dormancy and plasticity of germination in response to the R/FR ratio. However, in the opposite selective environment selection for longer leaves reduced seed dormancy and plasticity to the R/FR ratio. It is argued that leaf length and seed germination characteristics are somehow linked by shared physiological mechanisms, which may facilitate concerted changes in shade avoidance responses.  相似文献   

4.
Forest understory plants often respond less intensely to reduced ratios of red to far red (R : FR) light, an important signal of foliage shade, than conspecific or congeneric plants from open-canopy sites. Reduced responsiveness to low R : FR in plants from closed-canopy sites could be caused by two physiological mechanisms. First, closed-canopy plants could have less sensitive shade-avoidance responses to low R : FR. Second, the high irradiance response to FR (FR-HIR), which allows seedling de-etiolation under low R : FR, might be stronger or persist longer after de-etiolation in closed-canopy plants, thus counteracting shade-avoidance responses to low R : FR. These hypotheses were tested using diodes that emit red and far-red light to distinguish the responses to altered R : FR of genotypes of Impatiens capensis collected from a pair of open- and closed-canopy populations that have previously been shown to differ in sensitivity to R : FR. Genotypes from the open-canopy environment exhibited typical shade-avoidance responses, elongating in response to supplemental FR. However, genotypes from the closed-canopy environment responded to supplemental FR by elongating less than under ambient control conditions, indicating a persistent FR-HIR. Thus, the observed population differentiation in response to low R : FR may be linked to population differences in FR-HIR.  相似文献   

5.
Soybean development is controlled by environmental factors, primarily photoperiod and temperature. To date, photoperiod effects on flowering have been well studied but the performances and mechanism of postflowering photoperiod responses have not been fully understood, especially for the photoperiod effects on vegetative growth after flowering. In the present study, the responses of vegetative growth and reproductive development in soybean to different postflowering photoperiod regimes were investigated in four separate experiments. Three varieties of different maturity groups (MG) including the early (Dongnong 36, MG 000), medium (Dandou 5, MG IV), and late (Zigongdongdou, MG IX) were exposed to two photoperiods, short (10, 12 h) and long (15, 16 or 18 h). The results showed that postflowering photoperiod not only regulated reproductive development but also affected vegetative growth. Even when flowers and pods were removed, short-day (SD) treatment promoted leaf senescence. The onset of leaf senescence among varieties tested appeared to be dependent on photoperiod sensitivity. Leaf senescence of the late-maturing variety of Zigongdongdou (sensitive to photoperiod) was delayed more significantly than that of the medium and early-maturing varieties (less sensitive to photoperiod). Long-day (LD) treatments delayed leaf senescence and seed maturation in the late-maturing variety of Zigongdongdou plants with only the SD-induced leaves produced before flowering. LD treatments imposed from the beginning bloom, beginning pod setting or beginning seed filling delayed leaf senescence and seed maturation of late-maturing soybean variety (Zigongdongdou). Results of night-break with red (R) and far-red (FR) light demonstrated that postflowering photoperiod responses of soybean were R/FR reversible reactions and the phytochromes seemed to be functional as receptors of photoperiod signals even after flowering. It was proposed that the regulation of photoperiod on development of soybean was effective from emergence through maturation, and the postflowering photoperiod signals were also mediated by phytochromes similar to those before flowering. The flowering reversion in late-MG soybean varieties under LD was a direct result of LD and was not due to secondary effect of abscission of pods and flowers. Soybean leaves not only received SD signals but also LD signals; furthermore, the LD effects reversed the SD effects and vice versa.  相似文献   

6.
PHENOTYPIC PLASTICITY EARLY IN LIFE CONSTRAINS DEVELOPMENTAL RESPONSES LATER   总被引:10,自引:0,他引:10  
Abstract.— Plastic stem‐elongation responses to the ratio of red:far‐red (R:FR) wavelengths enable plants to match their phenotype to local competitive conditions. However, elongation responses early in the life history may occur at the cost of reduced plasticity later in the life history, because elongation influences both allocation patterns and structural integrity. A common‐garden experiment was performed to test whether seedling responses to R:FR affect biomass allocation, biomass accumulation, and subsequent plasticity to the cue. Seedlings of Abutilon theophrasti were stimulated to elongate by low R:FR treatments, and subsequent growth and plasticity was compared with nonelongated individuals. Elongated seedlings were less responsive than nonelongated ones to a second bout of low R:FR. Thus, seedling plasticity to R:FR reduces subsequent responsiveness to this cue. This negative association across life‐history stages suggests an important constraint on the evolution of plastic stem responses, because selection in A. theophrasti has previously been shown to favor increases in early elongation in combination with increased later elongation. The reduced responsiveness of elongated seedlings to R:FR appeared to result from a structural feedback mechanism, indicating that the opportunity cost of early responses may be lower in environments providing structural support.  相似文献   

7.
Plants growing in the shade receive both low light irradiance and light enriched in far red (FR) (i.e., light with a low red (R) to FR ratio). In an attempt to uncouple the R/FR ratio effects from light irradiance effects, we utilized Stellaria longipes because this species has two distinct natural population ecotypes, alpine (dwarf) and prairie (tall). The alpine population occupies the open, sun habitat. By contrast, the prairie population grows in the shade of other plants. Both 'sun' and 'shade' ecotypes responded with increased stem elongation responses under low irradiance, relative to growth under 'normal' irradiance, and this increased growth was proportionally similar. However, only the shade ecotype had increased shoot elongation in response to a low R/FR ratio. By contrast, the sun ecotype showed increased stem elongation in response to increasing R/FR ratio. Varying the R/FR ratios had no significant effect on ethylene evolution in either sun or shade ecotype. Under low irradiance, only the sun ecotype showed a significantly changed (decreased) ethylene evolution. We conclude that R/FR ratio and irradiance both regulate growth, and that irradiance can also influence ethylene evolution of the sun ecotype. By contrast, R/FR ratio and irradiance, while having profound influences on growth of the shade ecotype, do not appear to regulate these growth changes via effects on ethylene production.  相似文献   

8.
Two important environmental signals, shade light, where the red/far-red (R/FR) light ratio is reduced, and elevated temperatures can each promote shoot growth. We examined their interactions using hypocotyl elongation of young sunflower (Helianthus annuus) seedlings, and we did this in the context of a possible hormonal mechanism for the growth increases that were induced by each environmental signal. Seedlings were subjected to combinations of six different temperatures (10, 15, 20, 25, 30 and 35°C) and four R/FR ratios (normal at 1.2 and reduced at 0.9, 0.6 and 0.3). Hypocotyl length was significantly increased by each of elevated temperature and FR enrichment. The magnitude of elongation induced by FR enrichment (low R/FR ratios) was dependent on temperature, with maximal effects of FR enrichment being seen at 20°C. Hypocotyl tissue concentrations of four endogenous gibberellins (GAs) and abscisic acid (ABA) were measured using the stable isotope dilution method. Hypocotyl ethylene evolution was also assessed. Thus, hypocotyl growth in both normal and shade light is highly dependent on temperature, with the most significant increases in FR-induced growth occurring at 20 and 25°C. A causal involvement of endogenous hormones, especially the GAs, in the growth that is induced by elevated temperatures, as well as in FR-induced growth, is strongly implied, with temperature being the stronger signal.  相似文献   

9.
The photomorphogenic mutation lv in the garden pea (Pisum sativum L.), which appears to reduce the response to light-stable phytochrome, has been isolated on a tall, late photoperiodic genetic background and its effects further characterised. Plants possessing lv have a reduced flowering response to photoperiod relative to wild-type plants, indicating that light-stable phytochrome may have a flower-inhibitory role in the flowering response of long-day plants to photoperiod. In general, lv plants are longer and have reduced leaf development relative to Lv plants. These differences are maximised under continuous light from fluorescent lamps (containing negligible far-red (FR) light), and decrease with addition of FR to the incident light. Enrichment of white light from fluorescent lamps with FR promotes stem elongation in the wild type but causes a reduction in elongation in the lv mutant. This “negative” shade-avoidance response appears to be the consequence of a strong inhibitory effect of light rich in FR, revealed in lv plants in the absence of a normal response to red (R) light. These results indicate that the wild-type response to the R: FR ratio may be comprised of two distinct photoresponses, one in which FR supplementation promotes elongation by reducing the inhibitory effect of R, and the other in which light rich in FR actively inhibits elongation. This hypothesis is discussed in relation to functional differentiation of phytochrome types in the light-grown plant. Gene lw has been reported previously to reduce internode length and the response to gibberellin A1, and to delay flowering. The present study shows that the lw mutation confers an increased response to photoperiod. In all these responses the lw phenotype is superficially “opposite” to the lv phenotype. The possibility that the mutation might primarily affect light perception was therefore considered. The degree of dwarfing of lw plants was found to depend upon light quality and quantity. Dwarfing is more extreme in plants grown under continuous R light than in those grown in continuous FR or blue light or in darkness. Studies of the fluence-rate response show that the lw mutation imparts a lower fluence requirement for inhibition of elongation by white light from fluorescent lamps. Dark-grown lw plants are more strongly inhibited by a R pulse than are wild-type plants but, as in the wild type, this inhibition remains reversible by FR. Light-grown lw plants show an exaggerated elongation response to end-of-day FR light. Taken together, these findings indicate that the lw mutant may be hypersensitive to phytochrome action.  相似文献   

10.
Plant responses to crowding may be mediated by resource availability and/or by a specific environmental cue, the ratio of red:far red wavelengths (R:FR) perceived by phytochrome. This study examined the contribution of phytochrome-mediated photomorphogenesis to genetic variation in plastic responses to density in the annual plant Impatiens capensis. Inbred lines derived from open and woodland populations were grown under low density high density, and high density with selective removal of FR wavelengths to block phytochrome-mediated perception of neighbor proximity. Genetic variation in plasticity to density and to the R:FR cue was detected for several traits Plants grown at high density displayed increased internode elongation; decreased branch, flower, and node production; increased menstem dormancy; and decreased leaf area and specific leaf weight compared to plants grown at low density. Stem elongation responses to density were suppressed when phytochrome perception was blocked at high density. For these phytochrome-mediated traits, a genotype's plasticity to density was strongly correlated with its response to R:FR. Phytochrome-mediated traits were tightly correlated with one another, regardless of the density environment. However, the responses to density of meristem allocation to branching and leaf traits were less strongly phytochrome-mediated. These traits differed in patterns of plasticity, and their genetic correlations often differed across environments. In particular, genetic trade-offs involving meristem allocation to branching were expressed only at low density. The observed density dependence of phenotypic and genetic correlations implies that indirect selection and the potential for correlated response to selection will depend upon the competitive environment. Thus the differential sensitivity of characters to the R:FR cue can influence the evolution of integrated plastic responses to density.  相似文献   

11.
The ratio of red to far-red light (R : FR) experienced by seeds during maturation affects germination, but the genetic regulation of this effect is poorly understood. In Arabidopsis thaliana , responses to R : FR are governed by five phytochrome photoreceptors, PHYA–PHYE . PHYA , PHYB and PHYE mediate germination, but their roles in germination response to the seed maturation environment are largely unknown. Seeds of A. thaliana phytochrome mutants and natural accessions were matured in a factorial combination of cold (16 °C) and warm (24 °C) temperatures and high (R : FR = 1) and low (R : FR = 0.6) R : FR environments, resembling sunlight and foliar shade, respectively. Germination was observed in resulting seeds. All five phytochromes mediated germination responses to seed maturation temperature and/or R : FR environment. PHYA suppressed germination in seeds matured under cold temperature, and PHYB promoted germination under the same conditions. PHYD and PHYE promoted germination of seeds matured under warm temperature, but this effect diminished when seeds matured under reduced R : FR. The A. thaliana natural accessions exhibited interesting variation in germination responses to the experimental conditions. Our results suggest that the role of individual PHY loci in regulating plant responses to R : FR varies depending on temperature and provide novel insights into the genetic basis of maternal effects.  相似文献   

12.
Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat.  相似文献   

13.
Field experiments were conducted in St Paul, MN, USA, to test the hypothesis that early season declines in the red:far-red ratio (R:FR) associated with FR reflection from neighbouring leaves have a role in regulating barley development. Treatment plants were grown adjacent to densely sown border rows of barley. The borders functioned to reflect far-red (FR), which reduced R:FR within the treatment plant light environment without shading treatment plants. Barriers were set in the soil to minimize root interactions between treatment plants and borders. Treatment plants were spaced either 2 or 16 cm apart. The presence of borders significantly increased shoot leaf and internode lengths at both plant spacings. Leaf sheath length data suggest that interactions between 2 cm spaced treatment plants enhanced plant responsiveness to the presence of borders. Border treatments shortened the period of vegetative growth prior to initiation of main shoot floral primordia. Bordered plants formed fewer main shoot leaves, initiated internode elongation at a lower node, and had slightly earlier heading dates than unbordered controls. Leaf appearance rate was not influenced by border treatments. We conclude that barley shoot development is photomorphogenically modulated by R:FR. Early season shifts in R:FR could have a significant influence on shoot development given that barley has the capacity to detect and developmentally respond to declines in R:FR associated with FR reflection from neighbours.  相似文献   

14.
Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far‐red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post‐flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level.  相似文献   

15.
Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action.  相似文献   

16.
Covariation between light quality- and photoperiod-mediated phenotypic plasticity was investigated using Arabidopsis thaliana. Three episodes of artificial selection were imposed on an index that quantified the plastic response to reduced red to far-red ratios (R:FR), with higher index values indicating greater plasticity. Relative to control lines, two high plasticity (HP) lines showed 1.6- and 2.4-fold increases in the index; low plasticity (LP) lines showed 1.4- and 1.1-fold decreases. A factorial experiment combining high and low R:FR conditions with long and short photoperiods assessed indirect consequences of selection on plasticity. Despite divergent R:FR-mediated plasticities in HP vs. LP lines, all four lines showed increases in photoperiod-mediated responses and decreases in mean leaf number. Complex relationships among trait means, plasticities and underlying mechanisms caution against generalizing about the genetic architecture of plastic traits. Partially independent developmental and evolutionary responses to R:FR and photoperiod are somewhat unsurprising, given this species' cosmopolitan nature.  相似文献   

17.
Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour‐detection cues, such as a low ratio of red to far‐red (R:FR) radiation, activates a suite of shade‐avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth‐defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected. To test these hypotheses, we used a 3D functional–structural plant model of Brassica nigra that mechanistically simulates the interactions between plant architecture, herbivory, and the light environment. Our results show that plant‐level defence expression is a strong determinant of plant fitness and that leaf‐level defence mediation by R:FR can provide a fitness benefit in high densities. However, optimal plant‐level defence expression does not decrease monotonically with plant density, indicating that R:FR mediation of defence alone is not enough to optimize defence between densities. Therefore, assessing the ecological significance of R:FR‐mediated defence is paramount to better understand the evolution of this physiological linkage and its implications for crop breeding.  相似文献   

18.
The maternal environment may contribute to population differentiation in offspring traits if growing conditions of mother plants are different. However, the magnitude of such environmental maternal effects compared with genetic differentiation is often not clear. We tested the importance of environmental maternal effects by comparing population differentiation in parental seed directly collected in the field and in F1 seed grown under homogeneous conditions. The F1 seeds were obtained by random crosses within populations. We used five populations in each of four plant species to analyse seed mass and growth chamber germination of both generations at the same time. In two species, we additionally tested offspring performance in the field. We found a significant population differentiation in all species and for nearly all measured traits. Population‐by‐generation interactions indicating environmental maternal effects were significant for germination (three species) and for seed mass (two species) but not for growth and reproduction. The significant interaction was partly due to a reduction of among‐population differentiation from the parental to the F1 generation that can be explained by a decrease of maternal provisioning effects. However, in some species by trait combinations a change in population ranking and not a decrease of variation was responsible for significant population‐by‐generation interactions indicating environmental maternal effects beyond maternal provisioning. Fitting of seed mass as covariate was not successful in reducing environmental maternal effects on population differentiation in germination. We discuss alternative methods to account for environmental maternal effects in studies on genetic differentiation among populations.  相似文献   

19.
Alekseev  Victor  Lampert  Winfried 《Hydrobiologia》2004,526(1):225-230
The response of various life-history characteristics of Daphnia pulicaria to photoperiod and food concentration was measured in 16 combinations of maternal and offspring environments (long vs. short day, high vs. low food) in flow-through experiments. Response variables in offspring were time and survival to release of first offspring, clutch size and neonate mass in the first brood, mass of adult females after 30days and somatic growth rate during the course of the experiment. Most of these parameters were directly controlled by food concentration in the offspring environment, but maternal effects frequently modified the response. A long day length in the maternal environment resulted in a prolongation of the time to first clutch release in offspring similar to the direct effect of low food. Likewise, survival to maturation and female mass were affected by maternal photoperiod. Somatic growth rate and clutch size responded to combined effects of maternal food conditions and photoperiod. The laboratory results were used to predict the seasonal change of fecundity of Daphnia in the field. When data on clutch size are ordered in a sequence as the different combinations of maternal and offspring environment occur during the seasonal succession in a temperate lake, they show a bimodal distribution with a high peak in spring and a lower peak in fall. This pattern is consistent with field observations. We conclude that photoperiod and maternal effects are important factors influencing life history and population dynamics of Daphnia.  相似文献   

20.
Organisms withstand normal ranges of environmental fluctuations by producing a set of phenotypes genetically programmed as a reaction norm; however, extreme conditions can expose a misregulation of phenotypes called a hidden reaction norm. Although an environment consists of multiple factors, how combinations of these factors influence a reaction norm is not well understood. To elucidate the combinatorial effects of environmental factors, we studied the leaf shape plasticity of the carnivorous pitcher plant Cephalotus follicularis. Clonally propagated plants were subjected to 12-week-long growth experiments in different conditions controlled by growth chambers. Here, we show that the dimorphic response of forming a photosynthetic flat leaf or an insect-trapping pitcher leaf is regulated by two covarying environmental cues: temperature and photoperiod. Even within the normal ranges of temperature and photoperiod, unusual combinations of the two induced the production of malformed leaves that were rarely observed under the environmentally typical combinations. We identified such cases in combinations of a summer temperature with a short-to-neutral day length, whose average frequency in the natural Cephalotus habitats corresponded to a once-in-a-lifetime event for this perennial species. Our results suggest that even if individual cues are within the range of natural fluctuations, a hidden reaction norm can be exposed under their discordant combinations. We anticipate that climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号