首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kloks CP  Tessari M  Vuister GW  Hilbers CW 《Biochemistry》2004,43(31):10237-10246
The three-dimensional structure of the central cold shock domain (CSD) of the human Y-box protein (YB-1 CSD) is virtually identical to those available for the bacterial cold shock proteins (Csp's). We have further characterized YB-1 CSD by studying its dynamics by nuclear magnetic resonance. The observed structural similarity is reflected in the backbone dynamics, which for YB-1 CSD is very similar to that of the Escherichia coli protein CspA. The rotational correlation time of YB-1 CSD shows that it is a monomer. This indicates that the dimerization observed for the YB-1 protein is not caused by its CSD, but involves other parts of this protein. The YB-1 CSD is only marginally stable as are the mesophilic bacterial Csp's. In contrast to the rapid two-state folding of the bacterial Csp's, the formation of the native form of YB-1 CSD is slow and at least a three-state process. The NMR experiments revealed the presence of a second state of YB-1 CSD in equilibrium with the native form. The exchange rates from and to the folded state are in the order of 0.2 and 0.5 s(-1), respectively. Relaxation experiments indicated that the second state is a highly flexible, partly structured molecule.  相似文献   

2.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

3.
The molecular mechanisms of cold acclimation are still largely unknown; however, it has been established that overwintering plants such as winter wheat increases freeze tolerance during cold treatments. In prokaryotes, cold shock proteins are induced by temperature downshifts and have been proposed to function as RNA chaperones. A wheat cDNA encoding a putative nucleic acid-binding protein, WCSP1, was isolated and found to be homologous to the predominant CspA of Escherichia coli. The putative WCSP1 protein contains a three-domain structure consisting of an N-terminal cold shock domain with two internal conserved consensus RNA binding domains and an internal glycine-rich region, which is interspersed with three C-terminal CX(2)CX(4)HX(4)C (CCHC) zinc fingers. Each domain has been described independently within several nucleotide-binding proteins. Northern and Western blot analyses showed that WCSP1 mRNA and protein levels steadily increased during cold acclimation, respectively. WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression. Nucleotide binding assays determined that WCSP1 binds ssDNA, dsDNA, and RNA homopolymers. The capacity to bind dsDNA was nearly eliminated in a mutant protein lacking C-terminal zinc fingers. Structural and expression similarities to E. coli CspA suggest that WCSP1 may be involved in gene regulation during cold acclimation.  相似文献   

4.
Y-box结合蛋白功能及对肿瘤发生的影响   总被引:2,自引:0,他引:2  
张玮玮  黄惠芳  李庆伟  马飞 《遗传》2006,28(9):1153-1160
Y-box结合蛋白家族成员是一类高度保守的顺式作用元件, 广泛存在于原核及真核生物细胞中。它是一种多功能蛋白, 与转录调节、翻译调控、mRNA选择性剪接、DNA的修复、细胞增殖和再生等有关。Y-box结合蛋白的氨基酸序列包含3个结构域: 氨基酸N末端, 亲水结构域C末端, 冷休克结构域(cold shock domain CSD), 保守的冷休克结构域决定了Y-box结合蛋白的大部分功能。最近研究发现, 定位于细胞核中的YB-1蛋白在局部晚期非小细胞肺癌的预防上可作为新的靶位点, YB-1蛋白还可通过对抑癌基因p53启动子抑制起负调控作用, 此外, YB-1蛋白在PI3K/Akt信号通路中也起到重要的作用, 这些研究都为肿瘤的治疗提供了新的线索和启示。文章就Y-box结合蛋白功能及其对肿瘤发生的影响等方面进行概述。  相似文献   

5.
Eukaryotic Y-box proteins are nucleic acid-binding proteins implicated in a wide range of gene regulatory mechanisms. They contain the cold shock domain, which is a nucleic acid-binding structure also found in bacterial cold shock proteins. The Y-box protein YB-1 is known to be a core component of messenger ribonucleoprotein particles (mRNPs) in the cytoplasm. Here we disrupted the YB-1 gene in chicken DT40 cells. Through the immunoprecipitation of an epitope-tagged YB-1 protein, which complemented the slow-growth phenotype of YB-1-depleted cells, we isolated YB-1-associated complexes that likely represented general mRNPs in somatic cells. RNase treatment prior to immunoprecipitation led to the identification of a Y-box protein-associated acidic protein (YBAP1). The specific association of YB-1 with YBAP1 resulted in the release of YB-1 from reconstituted YB-1-mRNA complexes, thereby reducing the translational repression caused by YB-1 in the in vitro system. Our data suggest that YBAP1 induces the remodeling of YB-1-mRNA complexes.  相似文献   

6.
7.
The hypoxia responsive region (HRR) of the VEGF promoter plays a key role in regulating VEGF expression. We found that the cold shock domain (Y-box) repressor proteins, dbpA and dbpB/YB-1, bind distinct strands of the human VEGF HRR. We find both dbpA and dbpB are phosphorylated by ERK2 and GSK3beta in vitro, and the binding of dbpB to single-strand VEGF HRR DNA is regulated by this phosphorylation. These findings suggest the ERK/MAPK and PI3K pathways may regulate VEGF expression in part through regulating the action of these repressor proteins.  相似文献   

8.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

9.
10.
The cold-induced wheat WCSP1 protein belongs to the cold shock domain (CSD) protein family. In prokaryotes and eukaryotes, the CSD functions as a nucleic acid-binding domain. Here, we demonstrated that purified recombinant WCSP1 is boiling soluble and binds ss/dsDNA and mRNA. Furthermore, boiled-WCSP1 retained its characteristic nucleic acid-binding activity. A WCSP1 deletion mutant, containing only a CSD, lost ssDNA/RNA-binding activity; while a mutant containing the CSD and the first glycine-rich region (GR) displayed the activity. These data indicated that the first GR of WCSP1 is necessary for the binding activity but is not for the heat stability of the protein.  相似文献   

11.
B Mayr  T Kaplan  S Lechner    S Scherer 《Journal of bacteriology》1996,178(10):2916-2925
Whole-cell protein patterns of a psychrotrophic Bacillus cereus strain from cultures grown at 7 and 30 degrees C were compared. This analysis revealed that at least three major proteins are expressed at a significantly higher rate at 7 degrees C than at 30 degrees C. The most abundant of these cold-induced proteins was a small polypeptide of 7.5 kDa, designated CspA, of B. cereus. In addition, four small proteins very similar in size to CspA were seen on both 7 degrees C and 30 degrees C two-dimensional protein gels. Immunoblot analysis using B. cereus anti-CspA antibodies indicated that the five proteins described above plus an additional sixth protein not visible on silver-stained two-dimensional gels are members of a B. cereus cold shock protein family. This hypothesis was corroborated by cloning and sequencing of the genes encoding five proteins of this family. The protein sequences deduced are highly similar and show homology to small procaryotic cold shock proteins and to the cold shock domain of eucaryotic Y-box proteins. Besides CspA, only one of the additional five CspA homologs was slightly cold inducible. In the presence of 100 mM NaCl, the two purified members of the protein family (CspA and CspE) elute as dimers at an apparent molecular mass of 15 kDa from a gel filtration column. At higher salt concentrations, they dissociate into their monomers. Their ability to bind to the ATTGG motif of single-stranded oligonucleotides was demonstrated by band shift analysis.  相似文献   

12.
13.
Biochemistry (Moscow) - Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This...  相似文献   

14.
15.
The multifunctional DNA- and RNA-associated Y-box protein 1 (YB-1) specifically binds to splicing recognition motifs and regulates alternative splice site selection. Here, we identify the arginine/serine-rich SRp30c protein as an interacting protein of YB-1 by performing a two-hybrid screen against a human mesangial cell cDNA library. Co-immunoprecipitation studies confirm a direct interaction of tagged proteins YB-1 and SRp30c in the absence of RNA via two independent protein domains of YB-1. A high affinity interaction is conferred through the N-terminal region. We show that the subcellular YB-1 localization is dependent on the cellular SRp30c content. In proliferating cells, YB-1 localizes to the cytoplasm, whereas FLAG-SRp30c protein is detected in the nucleus. After overexpression of YB-1 and FLAG-SRp30c, both proteins are co-localized in the nucleus, and this requires the N-terminal region of YB-1. Heat shock treatment of cells, a condition under which SRp30c accumulates in stress-induced Sam68 nuclear bodies, abrogates the co-localization and YB-1 shuttles back to the cytoplasm. Finally, the functional relevance of the YB-1/SRp30c interaction for in vivo splicing is demonstrated in the E1A minigene model system. Here, changes in splice site selection are detected, that is, overexpression of YB-1 is accompanied by preferential 5' splicing site selection and formation of the 12 S isoform.  相似文献   

16.
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.  相似文献   

17.
Proteins interacting with the biological information molecules DNA and RNA play important cellular roles in all organisms. One widespread super family of proteins implicated in such function(s) is cold shock protein (CSP) that contains the cold shock domain (CSD). This work is planned to study the three-dimensional structure, conserved residues, and different active sites in the structure of cold resistant protein (CRP) from CRPF1, cold tolerant mutant of Pseudomonas fluorescence by comparative homology modeling. Here we tried to identify crucial residues that are involved in active sites or functional sites of the protein. The study reveals that CRP represent the prototype of the CSD and share a highly similar overall fold consisting of five antiparallel β-sheets forming a β-barrel structure with surface exposed aromatic and basic residues that were responsible for nucleic acid binding properties of variable binding affinities and sequence selectivity and harbors the nucleic acid binding motifs RNP1 and RNP2 that is highly conserved in CSP family.  相似文献   

18.
Structural organization of mRNA complexes with major core mRNP protein YB-1   总被引:2,自引:1,他引:1  
YB-1 is a universal major protein of cytoplasmic mRNPs, a member of the family of multifunctional cold shock domain proteins (CSD proteins). Depending on its amount on mRNA, YB-1 stimulates or inhibits mRNA translation. In this study, we have analyzed complexes formed in vitro at various YB-1 to mRNA ratios, including those typical for polysomal (translatable) and free (untranslatable) mRNPs. We have shown that at mRNA saturation with YB-1, this protein alone is sufficient to form mRNPs with the protein/RNA ratio and the sedimentation coefficient typical for natural mRNPs. These complexes are dynamic structures in which the protein can easily migrate from one mRNA molecule to another. Biochemical studies combined with atomic force microscopy and electron microscopy showed that mRNA–YB-1 complexes with a low YB-1/mRNA ratio typical for polysomal mRNPs are incompact; there, YB-1 binds to mRNA as a monomer with its both RNA-binding domains. At a high YB-1/mRNA ratio typical for untranslatable mRNPs, mRNA-bound YB-1 forms multimeric protein complexes where YB-1 binds to mRNA predominantly with its N-terminal part. A multimeric YB-1 comprises about twenty monomeric subunits; its molecular mass is about 700 kDa, and it packs a 600–700 nt mRNA segment on its surface.  相似文献   

19.
The cold shock domain (CSD) is an evolutionarily conserved nucleic acid binding domain that exhibits binding activity to RNA, ssDNA, and dsDNA. Mammalian CRHSP-24 contains CSD, but its structure-functional relationship has remained elusive. Here we report the crystal structure of human CRHSP-24 and characterization of the molecular trafficking of CRHSP-24 between stress granules and processing bodies in response to oxidative stress. The structure of CRHSP-24 determined by single-wavelength anomalous dispersion exhibits an α-helix and a compact β-barrel formed by five curved anti-parallel β strands. Ligand binding activity of the CSD is orchestrated by residues Ser(41) to Leu(43). Interestingly, a phosphomimetic S41D mutant abolishes the ssDNA binding in vitro and causes CRHSP-24 liberated from stress granules in vivo without apparent alternation of its localization to the processing bodies. This new class of phosphorylation-regulated interaction between the CSD and nucleic acids is unique in stress granule plasticity. Importantly, the association of CRHSP-24 with stress granules is blocked by PP4/PP2A inhibitor calyculin A as PP2A catalyzes the dephosphorylation of Ser(41) of CRHSP-24. Therefore, we speculate that CRHSP-24 participates in oxidative stress response via a dynamic and temporal association between stress granules and processing bodies.  相似文献   

20.
HIV-1 utilizes cellular factors for efficient replication. The viral RNA is different from cellular mRNAs in many aspects, and is prone to attacks by cellular RNA quality control systems. To establish effective infection, the virus has evolved multiple mechanisms to protect its RNA. Here, we show that expression of the Y-box binding protein 1 (YB-1) enhanced the production of HIV-1. Downregulation of endogenous YB-1 in producer cells decreased viral production. YB-1 increased viral protein expression by stabilizing HIV-1 RNAs. The stem loop 2 in the HIV-1 RNA packaging signal was mapped to be the YB-1-responsive element. Taken together, these results indicate that YB-1 stabilizes HIV-1 genomic RNA and thereby enhances HIV-1 gene expression and viral production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号