首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The egg-larval parasitoid Chelonus sp. induces the precocious onset of metamorphosis in the 4th (penultimate) stadium of its host Trichoplusia ni, emerges from the prepupa, and then feeds on it. Qualitative and quantitative changes in ecdysteroids and juvenile hormone were measured. Hemolymph of 3rd-to 4th-instar host larvae and the parasitoids they contained, as well as nonparasitized and parasitized eggs, were analyzed. In the host hemolymph a broad peak of ecdysteroids during molting into the 4th stadium and a continuous increase from day 2 (onset of precocious wandering) until day 4 (emergence of parasitoid) were observed; 20-hydroxyecdysone and 20,26-dihydroxyecdysone were predominant. The juvenile hormone titer fluctuated in the 3rd and early 4th stadium and fell to undetectable levels shortly before the precocious onset of wandering. The parasitoid's ecdysteroids started to increase on the molt to the 2nd instar (= early 4th instar of the host) and thereafter fluctuated on a high level, 20-hydroxyecdysone, 20,26-dihydroxy-ecdysone, and ecdysone being predominant. The juvenile hormone titer was high in late 1st-instar parasitoids, decreased to low levels at ecdysis into the 2nd instar, and increased again to high levels in the 2nd-instar larvae at the time when their shape changed from flat to cylindrical. After ecdysis to the 3rd instar the juvenile hormone titer fell. A comparison revealed that both ecdysteroids and juvenile hormone fluctuate independently in parasitoid and host at most stages, suggesting that the parasitoid produces its own hormones. The first data on ecdysteroids and juvenile hormones in the egg stage of a parasitoid/host system are reported. At the stage of eye pigmentation parasitized eggs contained more immunoreactive midpolar ecdysteroids than non-parasitized ones. 20-Hydroxyecdysone and 20,26-dihydroxyecdysone were the predominant ecdysteroids in both nonparasitized and parasitized eggs, but the latter contained several additional ecdysteroids which were not seen in nonparasitized eggs. The titer of juvenile hormone was similar in both. Shortly before hatching the ecdysteroids were low in parasitized and nonparasitized eggs, but the content of juvenile hormone was much higher in the former. At this stage the majority of parasitoids have already eclosed and teratocytes are released. The results of HPLC analysis indicated the presence of juvenile hormone III together with juvenile hormones I and II in parasitized eggs, but only juvenile hormones I and II in nonparasitized eggs.  相似文献   

2.
Metabolites of radioactive ecdysone or 20-hydroxyecdysone in larvae and pharate pupae of Sarcophaga peregrina were separated and identified by using thin-layer chromatography, high-performance liquid chromatography, and chemical methods. At the larval stage ecdysone was metabolized to biologically less active ecdysteroids predominantly through 20-hydroxyecydsone, at the pharate pupal stage, to other ecdysteroids which were tentatively identified as 26-hydroxyecdysone, 3-epi-26-hydroxyecdysone, and 3-epi-20,26-dihydroxyecdysone. Ecdysteroid acids were found in the polar metabolites during pharate pupal-pupal transformation, but scarcely detected in the larval metabolites. These acids were presumed to be ecdysonoic acid, 20-hydroxyecdysonoic acid, and their epimers. The conjugates of ecdysteroid that released the free ecdysteroids by enzymatic hydrolysis were produced more in larvae than in pupae, whereas the very polar ecdysteroids that were not affected by the enzyme were found more in pupae. Therefore, there are different metabolic pathways of ecdysone between these two successive developmental stages, and the alteration of the metabolic pathway may serve as one of the important factors in a regulatory mechanism of molting hormone activity which is responsible for normal development of this insect.  相似文献   

3.
Six naturally occurring C27 ecdysteroids were isolated and identified from the tobacco hornworm during pupal-adult development five days after peak titer of molting hormone activity. In order of decreasing quantities the hormones were: 20,26-dihydroxyecdysone, 3-epi-20-hydroxyecdysone, 20hydroxyecdysone, 3-epi-20,26-dihydroxyecdysone, 3-epi-ecdysone, and ecdysone. 20-Hydroxyecdysone, in an earlier study, was the major molting hormone present at peak titer during pupal-adult development. The major ecdysteroid present during embryonic development in this insect, 26-hydroxyecdysone, was not detected. The copresence of all six of these ecdysteroids from a single developmental stage of an insect provides information on the metabolic interrelationships that exist among these steroids and on their possible function(s) in insects. The 3alpha-ecdysteroids were far less active than the 3 beta-epimers in the house fly assay. The significance of epimerization is discussed.  相似文献   

4.
Peaks of ecdysteroids were observed during the different phases of embryonic development of intact Carausius eggs or eggs precociously deprived of their exochorion and cultivated under paraffin oil. Several groups of ecdysteroids were separated and analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) combined with radioimmunoassay. Ecdysteroids were similar in the two categories of eggs, including high-polarity products (essentially conjugates hydrolyzable by Helix pomatia digestive juice, or alkaline phosphatase), possible ecdysonoic acids (unhydrolyzable polar substances), free hormones, and nonpolar ecdysteroids. Four ecdysteroids were identified by co-elution during HPLC with reference compounds of 20,26-dihydroxyecdysone, 20-hydroxyecdysone, ecdysone, and 2-deoxy-20-hydroxyecdysone. Concentrations of these substances (free and conjugated forms) were studied during the different stages of embryonic development: 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone were the major free ecdysteroids. They showed parallel variations with large peaks at stages VI8 and VII6 whereas ecdysone titers were consistently low. Injected labelled ecdysone was converted efficiently into 20-hydroxyecdysone, and both compounds underwent 26-hydroxylation and/or conjugation to polar or apolar metabolites.  相似文献   

5.
The levels of both free and conjugated ecdysteroids, maternally labeled from [14C]cholesterol, of six different age groups of Manduca sexta eggs were quantitatively determined. Eggs 0–1-h old contain about 2.5 and 35 μ/g of the 2- and 26-phosphates of 26-hydroxyecdysone, respectively, and 1 μg/g of 26-hydroxyecdysone. During embryogenesis of 26-hydroxyedcdysone 26-phosphate is hydrolyzed to 26-hydroxyecdysone, which reaches a peak titer in 1–18-h-old eggs; the level of 26-hydroxyecdysone 2-phosphate remains rather constant. Additionally, other metabolic modifications such as hydroxylation, conjugation, epimerization, and oxidation are occurring; and as the level of the 26-hydroxyecdysone 26-phosphate decreases there is a progression of other ecdysteroids. C-20 hydroxylation first appears in 24–40-h-old eggs and reaches peak activity in 48–64-h-old eggs, where 20-hydroxyecdysone and 20, 26-dihydroxyecdysone are both present at peak titer but the latter is the major free ecdysteroid. Ecdysone is observed at measurable levels only in the three age groups of eggs between 1 and 64 h-old. C-3 epimerase activity also appears at 24–40 h and continually increases throughout embryogenesis to the point that 3-epi-26-hydroxyecdysone and 3-epi-20, 26-dihydroxyecdysone are the major free ecdysteroids in 96-h-old eggs. A new ecdysteroid conjugate, 26-hydroxyecdysone 22-glucoside, first appears at 24–40h and becomes the major conjugate in 72–80-h-old eggs; it represents an apparent end-product as its peak titer is reached and maintained throughout the final embryonic stages. 20-Hydroxyecdysonoic acid occurs in 48–64-h-old eggs, and along with 3-epi-20-hydroxyecdysonoic and ecdysonoic acids in 72–88-h-old eggs. 20-Hydroxyecdysonoic acid peaks during the latter time interval, and as its titer subsequently falls, there is a concurrent increase in the level of 3-epi-20-hydroxyecdysonoic which was identified as the second major component of the ecdysteroid conjugate fraction of 0–1-h-old larvae. Our results indicate that there is little or no biosynthesis of ecdysteroids during embryogenesis; that the materal ecdysteroid conjugate 26-hydroxyecdysone 26-phosphate serves as source for 26-hydroxyecdysone and the numerous metabolites; that 26-hydroxyecdysone and 20,26-dihydroxyecdysone may be the active hormones during embryonic development; and that glucosylation, epimerization, and formation of acids cosntitute inactivation processes. A scheme of the proposed pathways involved in the metabolism of 26–hydroxyecdysone 26-phosphate in the developing eggs of m. sexta is presented.  相似文献   

6.
Summary From adults ofPycnogonum litorale (Ström) eight ecdysteroids were isolated by HPLC and identified by mass spectrometry and NMR. One of the compounds is 20-hydroxyecdysone, two further ecdysteroids show no OH-group at C-22 (22-deoxy-20,26-dihydroxyecdysone, 22-deoxy-20-hydroxyecdysone=taxisterone). The five other compounds are esters of ecdysteroids with acetic acid (25R and 25S isomers of 20,26-dihydroxyecdysone 22-acetate, 20-hydroxyecdysone 22-acetate) or with glycolic acid (20-hydroxyecdysone 22-glycolate, ecydsone 22-glycolate). The latter are new among zoo- and phytoecdysteroids. No significant amounts of ecdysone could be detected. The origin of the ecdysteroids inPycnogonum litorale and their biological activity are discussed.Abbreviations RP-HPLC Reversed-phase high performance liquid chromatography - NP normal phase - RIA radioimmunoassay - NMR nuclear magnetic resonance - FT Fourier transform - CI/D chemical ionization/desorption - TFA trifluoroacetic acid - E ecdysone - 20E 20-hydroxyecdysone - 2026E 20 26-dihydroxyecdysone  相似文献   

7.
26-Hydroxyecdysone, which is the major free recoverable ecdysteroid of older age groups of embryonated eggs of the tobacco hornworm was also the major component in 4- to 18-hour-old embryonated eggs. The other 3β-ecdysteroids, ecdysone, 20-hydroxyecdysone, and 20,26-dihydroxy-ecdysone, were also present and accounted for an the molting hormone activity; 26-hydroxyecdysone was devoid of molting hormone activity in the house fly assay. 20-Hydroxyecdysone was a minor component, which confirms the earlier observations that the main metabolic route for ecdysteroids during embryonic development is that leading to 26-hydroxy-ecdysone, whereas formation of 20-hydroxyecdysone is a minor pathway. A new 3α-ecdysteroid, 3-epi-26-hydroxyecdysone, also devoid of molting hormone activity, was the second major ecdysteroid isolated from the eggs. 3-Epi-20,26-dihydroxyecdysone was detected in very minute amounts. In additon to the six 3β-and 3α-ecdysteroids there were at least an equivalent number of unknown ecdysteroids an of which lacked molting hormone activity. Their physical properties including chromatographic behavior are discussed.  相似文献   

8.
[14C]Cholesterol was injected into fifth-instar larvae of Manduca sexta, and the metabolites were isolated and identified from 8-day-old male and female pupae. A major portion of the metabolized cholesterol was esterified either with a sulfate group or with fatty acids. The predominant ecdysteroid metabolites were 20-hydroxyecdysone, 20,26-dihydroxyecdysone, 20-hydroxyecdysonoic acid, and 3-epi-20-hydroxyecdysonoic acid. Smaller amounts of ecdysteroids were identified as conjugates of 26-hydroxyecdysone, 3-epi-20-hydroxyecdysone, 20,26-dihydroxyecdysone, and its 3α-epimer. The metabolic profiles were similar for both male and female pupae. The two ecdysteroid acids were identified by nuclear magnetic resonance spectroscopy and chemical ionization mass spectrometry and by mass spectral analyses of their methyl esters. Detection of 3-epi-20-hydroxyecdysonoic acid as a major metabolite is significant, as its occurrence has been scarcely reported. 3-Epiecdysteroid acid formation is discussed as a possible ecdysteroid-inactivating pathway that may be operating specifically in lepidopterous insects or in particular developmental stages such as eggs or pupae.  相似文献   

9.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   

10.
Summary

Embryos of the phasmid Carausius morosus Br., deprived of their head at an early stage (V3, 27th day) of development live up to the 147th day when grown on their own vitello-serosal system.

In these embryos, the 2nd embryonic cuticle characteristic of the dorsal closure stage, and the 3rd embryonic cuticle (1st larval cuticle) with its setae and procuticle, both have a typical structure. Thus the cephalic endocrine system of the embryo is clearly not indispensable either for 2nd and 3rd cuticle deposition, or for production of a typical ecdysteroid peak at the dorsal closure, or even for the rise of ecdysteroid level during the 3rd cuticle secretion. But in decapitated embryos this rise is not followed by a decrease as it is in controls.

In both operated eggs and controls, the same free and conjugated 3 hormones were separated by HPLC and quantified by RIA: 20,26-dihydroxyecdysone, 20-hydroxyecdysone (main hormone in the phasmid) and ecdysone.

Very similar quantitative results were obtained for controls and operated eggs at the dorsal closure stage. However, noteworthy differences were found between the two kinds of eggs concerning the respective levels of 20-hydroxyecdysone and of its conjugates during the 3rd cuticle secretion.  相似文献   

11.
Ecdysteroid levels in larvae and pupae of Anastrepha suspensa (Diptera: Tephritidae) were measured by radioimmunoassay. These levels were correlated with histological changes throughout the development of the post-embryonic stages. Ecdysteroid levels increase rapidly throughout the last-larval instar and on the last day of this stage are 283 pg equivalents of 20-hydroxyecdysone per insect (14.5 ng/g) when wandering behaviour is initiated. At the end of this period the puparium is formed and within 24 h, the ecdysteroid rises to its highest peak (625 pg equivalents of 20-hydroxyecdysone/insect). Larval-pupal apolysis is initiated within 24 h later and the pupal cuticle is then secreted. Two days later, the ecdysteroids reach their lowest levels (75 pg equivalents of 20-hydroxyecdysone/insect or 0.6 ng/g) and most of the larval fat body and other tissues have been histolysed. In 5- to 10-day old pupae ecdysteroid levels again increase and remain relatively high throughout. During this period the larval epidermis is replaced by imaginal epidermis, imaginal discs begin to proliferate and the adult cuticle is secreted. Ecdysteroid levels finally fall 2 days prior to adult emergence. HPLC determinations indicate that 20-hydroxyecdysone is the predominant free ecdysteroid, and along with ecdysone, is readily detectable in all postembryonic stages of this species. An unusually high and unexplained peak of 20-hydroxyecdysone occurs in the pharate adult. This peak probably consists of ecdysone metabolites with retentions similar to that of 20-hydroxyecdysone and to which the antiserum is sensitive.  相似文献   

12.
The effect of blood-feeding on total and specific immunoreactive ecdysteroids in Stomoxys calcitrans adult females was examined following the fourth and fifth blood meals when total whole body and hemolymph ecdysteroids showed a dramatic increase in the titer. In general, for both total and specific immunoreactive ecdysteroids that included highly polar material, 20,26-dihydroxyecdysone, 20-hydroxyecdysone and ecdysone, there were clear differences between the effects of the fourth and fifth meals. Following the fifth meal, the titers rose sooner, reached higher levels and remained high longer than those following the fourth meal. This is the first examination of the effects of back-to-back blood meals on total and specific ecdysteroid levels in an intermittent, blood-feeding fly. These results suggest that both rates of synthesis and degradation are affected by blood-feeding and that the number and possibly quantity of blood ingested affect the biochemical mechanisms that regulate ecdysteroid titers in S. calcitrans.  相似文献   

13.
The hormonal mechanism which controls the larval diapause of the southwestern corn borer was examined. The onset of this facultative mature larval diapause is marked by a transition from a spotted to an immaculate larval form, and during diapause individuals may undergo one or more stationary larval ecdyses. Experiments were designed to uncover the nature of the humoral mechanism regulating this diapause state. The finding that injecting diapause larvae with 20-hydroxyecdysone only brought about a stationary larval ecdysis suggests that diapause was not maintained by the lack of ecdysone. Neck ligations performed on larvae which had just entered diapause resulted in a premature termination of diapause, and larval-pupal ecdysis occurred in the thoraco-abdominal section, suggesting that a cephalic factor was necessary for the maintenance of diapause. This finding was further supported by the discovery that injecting 20-hydroxyecdysone into the thoraco-abdominal section of previously ligated diapause larvae also resulted in a premature termination of diapause and larval-pupal ecdysis, indicating that ecdysone only initiated the pupal moulting cycle when the cephalic factor was absent.Further experiments led to the conclusion that the juvenile hormone is the cephalic factor. Topical treatment with a juvenile hormone mimic caused non-diapause mature larvae to become immaculate and enter diapause. Periodical topical application of this mimic to diapause larvae prolonged diapause and increased the number of stationary larval ecdyses. These findings suggest that the initiation and maintenance of diapause are regulated by juvenile hormone titre. Results indicate that larvae retain a high titre of juvenile hormone until the last stages of diapause. Injection of 20-hydroxyecdysone into early or middiapause larvae only caused stationary larval ecdyses, while the same injection into larvae in the late stages of diapause caused some of them to pupate. Histological studies of the neurosecretory cells, corpus cardiacum-allatum complex, and prothoracic glands showed that the endocrine system was not inactive during diapause. A new hypothesis is therefore proposed which recognizes the existence of hormonal activity during larval diapause and emphasizes the principal regulatory rôle of juvenile hormone.  相似文献   

14.
Rates of ecdysone and 20-hydroxyecdysone metabolism were measured by radio-assay in an in vitro system containing fat body isolated from blowfly larvae. The addition of forskolin which is known to stimulate artificially the intracellular adenylate cyclase system led to decreased rates of conversion of ecdysone into 20-hydroxyecdysone (= hormone activation) and of 20-hydroxyecdysone further to other metabolites (= hormone inactivation). The effect of forskolin was dose-dependent and reversible. Extracts prepared from larval brains were also tested. Some of them had the same effect as forskolin. It is concluded that the reactions leading from ecdysone to 20-hydroxyecdysone and further to hormonally inactive ecdysteroids are modulated by the intracellular level of cyclic nucleotides. We propose that a neurohormone is involved in the control of the reactions of the ecdysone metabolism. The observed new principle may contribute to the control of the titer of moulting hormone.  相似文献   

15.
In unparasitized 4th and 5th-instar larvae of Trichoplusia ni and in 4th-instar larvae parasitized by Chelonus sp. 20-hydroxyecdysone, 20,26-dihydroxyec-dysone, and 20-hydroxyecdysonoic acid were the predominant metabolites formed 2 h after injection of [3H]ecdysone. Other unidentified metabolites were seen, but none seemed to be specific for either parasitized or unparasitized larvae. The major difference between parasitized and unparasitized larvae was seen with respect to the quantity of apolar (unidentified) and polar metabolites (20-hydroxyecdysonoic acid and unidentified ones), which were produced to a greater extent in parasitized larvae. Ecdysone was rapidly converted into 20-hydroxyecdysone and the other polar metabolites in all stages investigated, and the parasitoid seemed not to affect the conversion of ecdysone into 20-hydroxyecdysone. When analyzing the fate of [3H]ecdysone in host and parasite separately, at a stage when the parasite drinks hemolymph of its host, we observed that 10–20% of the radioactivity was recovered from the parasitoid. Analysis of the parasitoid's ecdysteroids revealed that ecdysone and 20-hydroxyecdysone represented only a small proportion of the recovered labeled ecdysteroids, the majority being apolar and polar metabolites. Our data suggest that the parasitoid takes up ecdysteroids from its host, converts them, and to some extent releases apolar metabolites into the host.  相似文献   

16.
Ecdysone metabolism in Pieris brassicae during the feeding last larval stage was investigated by using 3H-labeled ecdysteroid injections followed by high-performance liquid chromatographic (HPLC
  • 1 Abbreviations: 3DE = 3-dehydroecdysone; 3D20E = 3-dehydro-20-hydroxyecdysone; 2026E = 20,26-dihydroxyecdysone; E = ecdysone; Eoic = ecdysonoic acid; 2026E′ = 3-epi-20,26-dihydroxyecdysone; E′ = 3-epiecdysone; E′oic = 3-epiecdysonoic acid; E′8P = 3-epiecdysone 3-phosphate; 20E′ = 3-epi-20-hydroxyecdysone; 20E′3P = 3-epi-20-hydroxyecdysone 3-phosphate; FT = Fourier transform; HPLC = high-performance liquid chromatography; 20E = 20-hydroxyecdysone; 20Eoic = 20-hydroxyecdysonoic acid; NMR = nuclear magnetic resonance; NP-HPLC = normal phase HPLC; RP-HPLC = reverse phase HPLC; TFA = trifluoroacetic acid; Tris = tris(hydroxymethyl)-aminomethane.
  • ) analysis of metabolites. Metabolites were generally identified by comigration with available references in different HPLC systems. Analysis of compounds for which no reference was available required a large-scale preparation and purification for their identification by 1H nuclear magnetic resonance spectrometry. The metabolic reactions affect the ecdysone molecule at C-3, C-20, and C-26, leading to molecules which are modified at one, two, or three of these positions. At C-20, hydroxylation leads to 20-hydroxyecdysteroids. At C-26, hydroxylation leads to 26-hydroxyecdysteroids which can be further converted into 26-oic derivatives (ecdysonoic acids) by oxidation. At C-3, there are several possibilities: there may be oxidation into 3-dehydroecdysteroids, or epimerization possibly followed by phosphate conjugation. Thus, injected 20-hydroxyecdysone was converted principally into 20-hydroxyecdysonoic acid, 3-dehydro-20-hydroxyecdysone, and 3-epi-20-hydroxyecdysone 3-phosphate. Labelled ecdysone mainly gave the same metabolites doubled by a homologous series lacking the 20-hydroxyl group.  相似文献   

    17.
    The metabolism of [3H]-ecdysone has been investigated at times of low and high endogenous ecdysteroid tit re, in early and late fifth-instar Schistocerca gregaria larvae, respectively. Ecdysone-3-acetate, 20-hydroxyecdysone, and 20,26-dihydroxyecdysone were identified as metabolites in both the free form and as polar conjugates. Comparison of the intact polar conjugates of the ecdysteroid acetates on two HPLC systems with the corresponding authentic compounds indicated that they were 3-acetylecdysone-2-phosphate and 3-acetyl-20-hydroxyecdysone-2-phosphate. Other major polar metabolites were identified as ecdysonoic acid and 20-hydroxyecdysonoic acid. Ecdysone metabolism in fifth-instar S. gregaria is apparently an age-dependent process. Early in the instar, excretion of both free and conjugated ecdysteroids, as well as ecdysteroid 26-acids, occurs. At this stage the level of ecdysteroid acetates in the conjugated (phosphate) form is high, in contrast to the free ecdysteroids, where ecdysone predominates. When the endogenous hormone titre is high, the formation of ecdysteroid acetates is less, the major excreted matabolites at that stage being conjugated 20-hydroxyecdysone together with ecdysteroid-26-acids, but little free ecdysteroids. Acetylation of ecdysone occurs primarily in the gastric caecae. Ecdysone-3-acetate (mainly as polar conjugate) is also a major product of ingested ecdysone in early fifth-instar Locusta migratoria.  相似文献   

    18.
    Testes from late last stage larvae of the tobacco budworm, Heliothis virescens, were incubated with [3H]ecdysone and [3H]cholesterol. [3H]Ecdysone was converted to six other major ecdysteroids, identified by cochromatography in reverse-phase high-pressure liquid chromatography (RPHPLC); four of them were verified by normal-phase HPLC. A highly polar fraction, moderately polar ecdysteroids (20,26-dihydroxyecdysone, 3-epi-20-hydroxyecdysone, and 20-hydroxyecdysone) and low-polarity ecdysteroids, including 2-deoxyecdysone, were detected after incubation with [3H]ecdysone. Compounds that reacted positively to antibodies to progesterone and testosterone were detected in the low-polarity fractions. Testes were incubated in fractions corresponding to each of the major ecdysteroid peaks derived from [3H]ecdysone metabolism. Although most of the radioactive ecdysteroid fractions were further metabolized to high- and low-polarity endpoints, 88% of the [3H]20-hydroxyecdysone peak apparently remained unmetabolized. 20-Hydroxyecdysone may be the primary ecdysteroid product of testes of H. virescens. [3H]Cholesterol was not metabolized to any appreciable extent.  相似文献   

    19.
    HPLC allowed separation of twelve major labeled compounds after injection of 3H-ecdysone into Pieris pharate pupae. These compounds were identified as six pairs of metabolites (3α and 3β epimers), comprising ecdysone, 20-hydroxyecdysone, 26-hydroxyecdysone, 20,26-dihydroxy-ecdysone and the polar metabolites P and 20-hydroxy-P. These last two products could not be enzymatically split by any hydrolase tested and are weak acids arising respectively from 26-hydroxyecdysone and 20,26-dihydroxyecdysone. They might be 26-oic compounds.Epimerization appears as a fundamental inactivation process in Pieris and could well be a general characteristic of closed systems (eggs and pupae). No significant amounts of hydrolyzable conjugates were detected in our biological system (pharate pupae and pupae).  相似文献   

    20.
    Moulting hormone levels for all stages of the life cycle of the desert locust, Schistocerca gregaria, have been determined using gas chromatography with electron capture detection of the trimethylsilylated hormones. During larval development, the major hormone detected is 20-hydroxyecdysone with smaller quantities of ecdysone present. In mature adult females the major ecdysteroid observed is a polar conjugate of ecdysone, with smaller quantities of conjugated 20-hydroxyecdysone also present. During embryonic development the pattern changes from a high proportion of conjugated ecdysone in the early stages to give more free hormone and a higher proportion of 20-hydroxyecdysone in later stages. The highest titre of 20-hydroxyecdysone found in this insect is during the 5th larval instar. Maximal levels of ecdysteroid per insect are found in mature females just before oviposition, while the highest level of ecdysteroid per g of tissue is found in the eggs.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号