首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
We have measured the cytochrome compositions of subfractions derived from appressed and non-appressed thylakoids by centrifugation and aqueous two-phase partition. Cytochrome b-559 (HP) was not detectable in the fraction derived from non-appressed thylakoids. Cytochromes f, b-563 and b-559 (LP) were all evenly distributed throughout the thylakoid membrane. This distribution points to plastocyanin as a possible lateral shuttle of reducing equivalents between spatially separated photosystems.Cytochrome f was accessible to externally added plastocyanin in the inside-out vesicles but not in vesicles of normal sidedness. This strongly supports a location at the inner side of the thylakoid membrane. Cytochrome b-563 was slowly reduced by dithionite in vesicles with both normal and inside-out orientation suggesting a location within the membrane interior.  相似文献   

2.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   

3.
N. Murata  M. Miyao  T. Omata  H. Matsunami  T. Kuwabara 《BBA》1984,765(3):363-369
The stoichiometry of the proteins of the photosynthetic oxygen evolution system and of the electron transport components in Photosystem II particles prepared with Triton X-100 from spinach chloroplasts were determined. Per about 220 chlorophyll molecules, there were one reaction center II, one molecule each of the 33, 24 and 18 kDa proteins, four Mn atoms, two cytochromes b-559 (one high-potential, the other low-potential), and 3.5 plastoquinone-9 molecules, but practically no cytochrome b-563, cytochrome f, phylloquinone, α-tocopherol or α-tocopherylquinone.  相似文献   

4.
Beatrix Kohnke  Peter Brandt 《BBA》1984,766(1):156-160
The study of the successive formation of the photosynthetic apparatus in Euglena gracilis (Brandt, P. and Von Kessel, B. (1983) Plant Physiol. 72, 616–619) was extended to the determination of the stage-specific synthesis of cytochrome bf complex during the cell cycle of this alga. Most of the cytochrome f (33 kDa) has properties of an intrinsic membrane protein, but part of it is soluble. Cytochrome b-563 (18 kDa) is only intrinsic. The intensity of binding the intrinsic cytochromes in the thylakoids depends on the developmental stage of the organism. The light-independent synthesis of cytochrome f takes place prior to the assembly of the chlorophyll-protein complex I (CP I). Immediately after this assembly of CP I, cytochrome b-563 is synthesized in the light. Hence, the ratio cytochrome b-563/cytochrome f changes during the cell cycle of E. gracilis. The physiological implication of presumably non-complexed cytochrome f and of complex-bound cytochromes f and b-563 on the stage-specific efficiency of photosynthesis of E. gracilis is discussed.  相似文献   

5.
Greg Smutzer  Jui H. Wang 《BBA》1984,766(1):240-244
A PS II preparation highly active in oxygen generation was prepared from the cyanophyte, Synechococcus lividus. This preparation was enriched in Hill reaction activity, manganese, cytochrome b-559, and possessed only trace amounts of cytochrome b-563. This non-phosphorylating, visually clear preparation appears to be a promising system for the detailed study of Photosystem II.  相似文献   

6.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

7.
(1) The effect of four active antisera against plastocyanin on Photosystem I-driven electron transport and phosphorylation was investigated in spinach chloroplasts. Partial inhibition of electron transport and stimulation of plastocyanin-dependent phosphorylation were sometimes observed after adding amounts of antibodies which were in large excess and not related to the plastocyanin content of the chloroplasts. This indicates effects of the antibodies on the membrane. (2) The antibodies against plastocyanin neither directly nor indirectly agglutinated unbroken chloroplast membranes. (3) The plastocyanin content of right-side-out and inside-out thylakoid vesicles isolated by aqueous polymer two-phase partition from chloroplasts disrupted by Yeda press treatment was determined by quantitative rocket electroimmunodiffusion. Right-side-out vesicles retained about 25%, inside-out vesicles none of the original amount of plastocyanin. (4) The effect of externally added plastocyanin on the reduction of P-700 was studied by monitoring the absorbance changes at 703 nm after a long flash. In inside-out vesicles P-700 was reduced by the added plastocyanin but not in right-side-out vesicles and class II chloroplasts. These results provide strong evidence for a function of plastocyanin at the internal side of the thylakoid membrane.  相似文献   

8.
Yeda press disruption of thylakoids in the presence of magnesium followed by aqueous polymer two-phase partitioning fractionated the total thylakoid membrane material into two distinctly different fractions. One fraction comprised approx. 60% of the material on a chlorophyll basis and contained inside-out vesicles while the other fraction (40%) contained right-side-out vesicles. The sidedness of the vesicles was determined from the direction of their light-induced proton translocation. The inside-out vesicles showed a pronounced Photosystem (PS) II enrichment as judged by their high PS II and low PS I activities. Moreover, they showed a high ratio between the PS II reaction centre chlorophyll-protein complex and the PS I reaction centre chlorophyll-protein complex (CP I). The chlorophyll ab ratio was as low as 2.3 compared to 3.2 for the starting material. In contrast, the right-side-out vesicles showed a pronounced PS I enrichment. Their chlorophyll ab ratio was 4.3–4.9. The tight stacking induced by Mg2+ allows a quantitative formation of inside-out vesicles from the appressed thylakoid regions while mainly non-appressed thylakoids turn right-side-out. The possibility of fractionating all of the thylakoid material into two sub-populations with markedly different composition with respect to PS I and PS II argues against a close physical association between the two photosystems and in favour of their spatial separation in the plane of the membrane. This fractionation procedure, which can be completed within 1 h and gives high yields of both PS II inside-out thylakoids and PS I right-side-out thylakoids, should be very useful for facilitating and improving studies on both the transverse and lateral organization of the thylakoid membrane.  相似文献   

9.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

10.
Two high fluorescent, nuclear recessive mutants of maize (Zea mays L.), designated hcf-2 and hcf-6, are described which are missing the chloroplast cytochrome f/b-563 complex. Thylakoids from the mutants show a block in whole chain electron transport activity (H2O to methyl viologen), while retaining activities associated with photosystem II (H2O to phenylenediamine) and photosystem I (diaminodurene to methyl viologen). Chemically induced, optical difference spectra indicate a loss of cytochromes f and b-563. Cytochrome b-559 is present in both high and low potential forms. EPR analyses of thylakoid membranes of hcf-6 reveals the lack of a signal (g = 1.90) associated with the Rieske Fe-S center. Additionally, hcf-6 is lacking EPR signals at g = 6 (attributable to the high spin ferric heme of cytochrome b-563) and g = 2.5 (unidentified). The mutant retains signals at g = 2.9 (cytochrome b-559) and at g = 4.3 and 9 (both signals probably arising from a storage form of ferric iron).

Thylakoid polypeptides are examined using polyacrylamide gel electrophoresis. hcf-2 and hcf-6 have identical profiles, showing losses of polypeptides with apparent molecular masses of 33 (cytochrome f), 23 (cytochrome b-563), and 17.5 kilodaltons. The protein associated with the Rieske Fe-S center could not be determined from the gel profiles. Additionally, both mutants show an increase in a band with a molecular mass of 31 kilodaltons.

  相似文献   

11.
Membranes isolated from heterocysts and vegetative cells of Anabaena 7120 were assayed for content of cytochrome f, cytochrome b-563, cytochrome b-559HP, cytochrome b-559LP, and cytochrome aa3 by use of reduced-minus-oxidized difference spectra. The level of cytochrome aa3 in heterocyst membranes was 4 to 100 times higher than that in vegetative cells of Anabaena 7120 or other species of cyanobacteria. Heterocyst membranes lack cytochrome b-559HP but contain cytochrome b-559LP (Em7.5 = +77 millivolts, n = 1) at approximately the same concentration as cytochrome f. The role of cytochrome b-559LP in the hydrogenase-dependent electron transfer pathway was investigated with the inhibitor 2-(n-heptyl)-4-hydroxyquinoline N-oxide which blocks electron flow from hydrogenase to acceptors reacting with the plastoquinone pool. Addition of inhibitor elicited no change in the reduction level of cytochrome b-559LP indicating that this cytochrome is not directly involved in this pathway.  相似文献   

12.
The development of photochemical activities in isolated barley plastids during illumination of dark-grown plants has been studied and compared with the behaviour of plastocyanin, cytochromes f, b-559LP, b-563 and b-559HP and pigments P546 (C550) and P700. Electron-transport activity dependent on Photosystem 1 and cyclic photophosphorylation dependent on N-methylphenazonium methosulphate (phenazine methosulphate) were very active relative to the chlorophyll content after only a few minutes of illumination of etiolated leaves, and then rapidly declined during the first few hours of greening. By contrast, Photosystem 2 activity (measured with ferricyanide as electron acceptor) and non-cyclic photophosphorylation were not detectable during the first 2½h of greening, but then increased in total amount in parallel with chlorophyll. The behaviour of the electron carriers suggested their association with either Photosystem 1 or 2 respectively. In the first group were plastocyanin, cytochrome f and cytochrome b-563, whose concentrations in the leaf did not change during greening, and cytochrome b-559LP whose concentration fell to one-half its original value, and in the second group were cytochrome b-559HP and pigment P546, the concentrations of which closely followed the activities of Photosystem 2. Pigment P700 could not be detected during the first hour, during which time some other form of chlorophyll may take its place in the reaction centre of Photosystem 1. The plastids started to develop grana at about the time that Photosystem 2 activity became detectable.  相似文献   

13.
Light- and oxygen-induced changes of cytochromes f, b563, and b559 and ferredoxin-flavoprotein were studied by a double beam spectrophotometer with combinations of inhibitors and lowered temperatures in the whole cells of the pale green mutant of Chlamydomonas reinhardi (ATCC 18302). At room temperature, the steady state changes of cytochrome f and ferredoxin-flavoprotein are small, but at low temperature slightly above 0 C, they are clearly defined. Phenylmercuric acetate inhibits photoreduction of ferredoxin-flavoprotein and cytochrome f simultaneously but not that of cytochrome b563. 2-Heptyl-4-hydroxyquinoline-N-oxide shows a crossover point between cytochromes f and b563 and partially inhibits photoreduction of cytochrome f. Two cyclic pathways operating in C. remhardi are postulated: (a) photosystem I → xb563f → photosystem I; and (b) photosystem I → x → ferredoxin-flavoprotein → f → photosystem I.  相似文献   

14.
Jrgen Bergstrm  Tore Vnngrd 《BBA》1982,682(3):452-456
The cytochromes in spinach chloroplasts were studied using EPR spectroscopy. In addition to the low-spin heme signals previously assigned, cytochrome f (gz 3.51), high-potential cytochrome b-559 (gz 3.08) and cytochrome b-559 converted to a low-potential form (gz 2.94), a high-spin heme signal was induced by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). However, this signal cannot be due to cytochrome b-563 in its native form. The orientation of the cytochromes in the thylakoid membrane was studied in magnetically oriented chloroplasts. Cytochrome b-559 in the native state and in the low-potential form was found to have its heme plane perpendicular to the membrane plane. The orientation was the same for cytochrome b-559 oxidized by low-temperature illumination, which suggests that also the reduced heme is oriented perpendicular to the membrane.  相似文献   

15.
The effect of 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) on the kinetics of cytochrome b-563 and cytochrome c2 turnovers following single-turnover flashes was measured in isolated heterocysts. Low concentrations of HQNO (below 3 μM) blocked reoxidation of cytochrome b-563, whereas higher concentrations (above 5 μM) resulted in additional inhibition of cytochrome b-563 oxidation and also inhibited reduction of cytochrome b-563 and cytochrome c. Similar effects on cytochrome b-563 reduction and reoxidation were obtained with a combination of 5 μM HQNO and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (1–7 μM). In HQNO-inhibited heterocysts, cytochrome c reduction following a flash occurred in three phases with half-times of 0.5, 2.8 and 45 ms. The second phase nearly equalled the cytochrome b-563 reduction in half-time and magnitude. In the presence of HQNO, the reoxidation of cytochrome b-563 following two closely spaced actinic flashes displayed biphasic kinetics. The two phases correspond to reoxidation of cytochrome b-563 in which one or both of the cytochrome b-563 hemes in the cytochrome b–f complex are reduced. These results are interpreted in terms of a Q-loop in which HQNO, at low concentrations, blocks the site of rapid cytochrome b-563 reoxidation and at higher concentrations, also inhibits the site of electron donation by plastoquinol to the cytochrome b-f complex.  相似文献   

16.
The purification and properties of a new oxygen-evolving Photosystem (PS) II particle from the thermophilic blue-green alga Phormidium laminosum are described. The activity of the lauryldimethylamine N-oxide PS II-enriched supernatant described previously (Stewart, A.C. and Bendall, D.S. (1979) FEBS Lett. 107, 308–312) was found to be stabilized for several days at 4°;C by the addition of a second detergent, dodecyl-β-d-maltoside (lauryl maltoside). The lauryl maltoside/lauryldimethylamine N-oxide extract could be fractionated by sucrose density gradient centrifugation. Very high rates of oxygen evolution, typically 1900–2400 μmol O2/mg chlorophyll a per h at pH 7 with dimethylbenzoquinone and ferricyanide as acceptors, were observed for the lowest green band from the gradient. This fraction contained cytochromes b-559 (high-potential) and c-549, but was completely devoid of P-700 and cytochromes b-563 and f. The purified oxygen-evolving particles comprised seven major polypeptides (Mr 58 900, 52 400, 43 200, 33 900, 30 000, 16 000 and 15 000) and approximately five minor polypeptides. The particles contained 3–4 Mn atoms per reaction centre and had a chlorophyll antenna of approx. 50 chlorophyll a. The fast phase of fluorescence induction curves in the presence of hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) could be described by an exponential, suggesting that no energy transfer was occurring between the PS II units responsible for this phase. Comparison of the area above the fluorescence induction curves in the absence and presence of DCMU suggested an acceptor pool size of 2–3 equivalents per centre.  相似文献   

17.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

18.
Inside-out spinach thylakoid vesicles can be isolated by aqueous polymer two-phase partition following mechanical disruption of spinach chloroplast lamellae (Andersson, B and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472) and a mechanism for their formation has been experimentally supported (Andersson B., Sundby, C. and Albertsson, P.-Å. (1980) Biochim. Biophys. Acta 599, 391–402). Upon disruption, inside-out vesicles may form under stacking conditions, e.g., in 5 mM MgCl2 or 150 mM NaCl, while disruption under destacking conditions, i.e., low concentrations of monovalent cations, gives only right-side-out vesicles. This study deals with the sidedness stability of the isolated inside-out thylakoid vesicles when stored or disrupted by sonication in various ionic environments. The sidedness of thylakoid vesicles was determined by their partition behaviour in an aqueous polymer phase system, direction of proton translocation and aggregation response (stacking) upon addition of MgCl2. The results show that no spontaneous change from everted to normal sidedness occurs upon storage of the inside-out thylakoids. In contrast, sonication of these vesicles under destacking conditions (5 mM NaCl) results in a nearly complete transformation to right-side-out orientation. Also, in the presence of 5 mM MgCl2 or 150 mM NaCl, sonication induced a change in sidedness of the inside-out vesicles but to a lesser extent. The stabilizing effect on the everted sidedness by cations was shown to be a result of preventing vesicle fragmentation by maintaining internal thylakoid appresions rather than by influencing the membrane curvature during resealing. Once released from an appressed state by overcoming the stacking forces, an opened thylakoid membrane shows an absolute preference for turning right-side-out in all media tested. These results strongly support the proposed formation mechanism, in which pairs of neighbouring grana membranes after disruption reseal with each other promoted by their close proximity. Since the inside-out vesicles derive from the grana appressions, their transformation back to normal sidedness exposes the outer membrane surface of appressed thylakoids. This region of the thylakoid membrane is normally hidden in the grana appressions and removal of grana leads concomitantly to lateral intermixing with non-appressed thylakoid components. Thus the current isolation of right-sided vesicles derived from the grana appressions should be a new tool for studies on the molecular organization of the thylakoid membrane.  相似文献   

19.
Tatsuo Omata  Norio Murata 《BBA》1984,766(2):395-402
The cytochrome and prenylquinone compositions were compared for cytoplasmic membranes and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans. Reduced-minus-oxidized difference absorption spectra at ?196°C indicated that the thylakoid membranes contained photosynthetic cytochromes such as cytochrome ?, cytochrome b-559 and cytochrome b6, while cytochromes c-549 and c-552 were detected spectrophotometrically only after their release by sonic oscillation. The cytoplasmic membrane preparation contained one or two low-potential cytochrome(s) with α-band maxima at 553 and 559 nm at ?196°C, which differed from the cytochromes in the thylakoid membranes. A cytochrome specific to the cytoplasmic membranes was also found by heme-staining after lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Both types of membranes contained the three prenylquinones plastoquinone-9, phylloquinone and 5′-monohydroxyphylloquinone, but in different proportions.  相似文献   

20.
Inside-out thylakoid vesicles have been separated from right-side-out material after press disruption of chloroplast lamellae. The separation was obtained by partition in an aqueous dextran-polyethylene glycol two-phase system, a method which utilizes differences in surface properties for separation of membrane particles. The isolated thylakoid vesicles showed the following inside-out properties: (1) light-induced reversible proton extrusion into the surrounding medium when supplied with the Photosystem II electron acceptor phenyl-p-benzoquinone; (2) a pH rise in the internal phase accompanying the external proton release, (3) sensitivity to trypsin treatment different from that of thylakoid membranes of normal orientation; (4) concave EF and convex PF freeze-fracture faces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号