首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
P. Gregory  J. W. Bradbeer 《Planta》1973,109(4):317-326
Summary Etioplasts obtained from the primary leaves of dark-grown bean plants contained cytochromes f, b-559LP and b-563 in a molar ratio of approximately 1.0:2.0:1.5. On illumination of the plants there was a lag of between 10 and 15 h before these cytochromes increased in amount, but after 48 h they had increased from 6- to 10-fold on a per plastid basis. The presence of cytochrome b-559HP in the plastids was first detected after 15 h of illumination, which coincided with the commencement of grana formation and the onset of a number of photosynthetic reactions in the greening leaves. After 48 h of illumination the molar ratio for cytochromes f, b-559HP, b-559LP and b-563 was 1.0:1.2:2.8:2.6.Agranal chloroplasts formed by the exposure of dark-grown plants to intense light flashes contained high amounts of cytochromes f, b-559LP and b-563 but cytochrome b-559HP could not be detected.As the light-induced formation of cytochromes f, b-559LP and b-563 was substantially inhibited by D-threo chloramphenicol, but not by the L-threo isomer, it seems likely that their formation was dependent on 70S ribosomes. Both chloramphenicol isomers gave plastids which lacked cytochrome b-559HP.  相似文献   

2.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

3.
Membranes isolated from heterocysts and vegetative cells of Anabaena 7120 were assayed for content of cytochrome f, cytochrome b-563, cytochrome b-559HP, cytochrome b-559LP, and cytochrome aa3 by use of reduced-minus-oxidized difference spectra. The level of cytochrome aa3 in heterocyst membranes was 4 to 100 times higher than that in vegetative cells of Anabaena 7120 or other species of cyanobacteria. Heterocyst membranes lack cytochrome b-559HP but contain cytochrome b-559LP (Em7.5 = +77 millivolts, n = 1) at approximately the same concentration as cytochrome f. The role of cytochrome b-559LP in the hydrogenase-dependent electron transfer pathway was investigated with the inhibitor 2-(n-heptyl)-4-hydroxyquinoline N-oxide which blocks electron flow from hydrogenase to acceptors reacting with the plastoquinone pool. Addition of inhibitor elicited no change in the reduction level of cytochrome b-559LP indicating that this cytochrome is not directly involved in this pathway.  相似文献   

4.
Cytochrome b559HP has been detected by spectrochemical assays in plastids of barley leaves greened under intermittent light (flashed leaves). The amount of cytochrome b559HP in these plastids was nearly 10-fold lower than in normal chloroplasts when the results were expressed on plastid number. The amount of cytochrome b559HP phototransformable at -170°C was similar, on a C-550 basis, in the plastids of flashed and normal green leaves. The appearance of the 2 components was simultaneous during the greening process under intermittent light and it is suggested that it was parallel to the increase of appressed regions in thylakoids. The illumination of flashed leaves under continuous light for 5 minutes allowed the appearance of a normal Photosystem-II activity, but had no effect either on the cytochrome b559HP content of the plastids or on the photoreactivity of this component at low temperature.  相似文献   

5.
The development of photochemical activity during the greening of dark-grown barley seedlings (Hordeum vulgare L. cv. Svalöfs Bonus) was studied in relation to the formation of the high potential form of cytochrome b-559 (cytochrome b-559HP). Photosynthetic oxygen evolution from leaves was detected at 30 minutes of illumination. The rate of oxygen evolution per gram fresh weight of leaf was as high at 2 to 2.5 hours of greening as at 24 hours or in fully greened leaves. On a chlorophyll basis, the photosynthetic rate at 90 minutes of greening was 80-fold greater than the rate at 45 hours. It is concluded that the majority of photosynthetic units are functional at an early stage of greening, and that chlorophyll synthesis during greening serves to increase the size of the units.  相似文献   

6.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

7.
Seven-day-old dark-grown bean leaves were greened under continuous light. The amount of chlorophyll, the ratio of chlorophyll a to chlorophyll b, the O2 evolving capacity and the primary photochemical activities of Photosystem I and Photosystem II were measured on the leaves after various times of greening. The primary photochemical activities were measured as the photo-oxidation of P700, the photoreduction of C-550, and the photo-oxidation of cytochrome b559 in intact leaves frozen to −196 C. The results indicate that the reaction centers of Photosystem I and Photosystem II begin to appear within the first few minutes and that Photosystem II reaction centers accumulate more rapidly than Photosystem I reaction centers during the first few hours of greening. The very early appearances of the primary photochemical activity of Photosystem II was also confirmed by light-induced fluorescence yield measurements at −196 C.  相似文献   

8.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   

9.
Oxidation-reduction titrations of several electron carriers found in chloroplast Photosystem I fragments have been performed. The midpoint potential of P700 in these fragments and in chloroplasts has been found to be +520 mV by optical absorbance methods or electron paramagnetic resonance spectroscopy. The copper-containing protein plastocyanin is present in Photosystem I fragments and has a midpoint potential of +320 mV, significantly less positive than the midpoint potential of cytochrome f in the same fragments, which was measured to be +375 mV. Photo-system I fragments contain two b cytochromes, a low-potential form of cytochrome b559 (Em = +110 mV) and cytochrome b563 (Em = ?100 mV).  相似文献   

10.
Evolution of oxygen and turnover of cytochromes b-563 and ? were measured upon illumination of isolated intact spinach chloroplasts with a series of flashes. The flash yield of cytochrome ? oxidation approximated the sum of the yields of cytochrome b-563 reduction and electron transfer through Photosystem II, regardless of whether HCO?3, 3-phosphoglycerate or O2 served as the terminal electron acceptor. No absorbance contribution from cytochrome b-559 was discerned within the time range studied. Some pseudocyclic electron flow occurred when both HCO?3 and 3-phosphoglycerate were omitted, and possibly also during induction of photosynthesis; however, the flash yield data suggest that O2 is not reduced at a significant rate during steady state photosynthesis. The maximum rate of cytochrome ? turnover (1000 μequiv./mg chlorophyll per h) was adequate to support the highest rates of photosynthesis observed in isolated chloroplasts.These results agree with the concept that cytochrome ? is a component both of the linear and cyclic pathways whereas cytochrome b-563 functions only in the cyclic pathway. NH4Cl decreased the half time of cytochrome b-563 oxidation from 11.6 to 8.2 ms and decreased the half time of cytochrome ? reduction from 7.2 to 2.8 ms. The cyclic and linear pathways thus seem to be jointly regulated by a transthylakoid H+ gradient through a common control point on the reducing side of cytochrome ?. Cyclic turnover also increased during the induction phase of photosynthesis, when linear throughput is limited by the rate of utilization of NADPH. The slow rise in the P-518 transient correlated with increased cyclic activity under the above conditions.It is proposed that flexibility in the utilization of linear and cyclic pathways allows the chloroplast to generate ATP and NADPH in ratios appropriate to varying needs.  相似文献   

11.
N. Murata  M. Miyao  T. Omata  H. Matsunami  T. Kuwabara 《BBA》1984,765(3):363-369
The stoichiometry of the proteins of the photosynthetic oxygen evolution system and of the electron transport components in Photosystem II particles prepared with Triton X-100 from spinach chloroplasts were determined. Per about 220 chlorophyll molecules, there were one reaction center II, one molecule each of the 33, 24 and 18 kDa proteins, four Mn atoms, two cytochromes b-559 (one high-potential, the other low-potential), and 3.5 plastoquinone-9 molecules, but practically no cytochrome b-563, cytochrome f, phylloquinone, α-tocopherol or α-tocopherylquinone.  相似文献   

12.
The aim of this article is to assemble and integrate, from a personal perspective of a research participant, seldom examined evidence that is incompatible with some basic tenets of photosynthetic electron transport, the cornerstone of which is the Z scheme. The nonconforming evidence pertaining to the mode of ferredoxin reduction and the role of the copper redox protein, plastocyanin, indicates that contrary to the Z scheme ferredoxin is reduced in two experimentally distinguishable ways: oxygenically by PS II (renamed the oxygenic photosystem), without the participation of PS I, and anoxygenically by PS I (renamed the anoxygenic photosystem). It also indicates that plastocyanin is not only, as the Z scheme asserts, the electron donor to the reaction center chlorophyll of PS I (P700) but also to the reaction center chlorophyll of PS II (P680). Other unconventional findings include evidence that the fully functional oxygenic photosystem, when operating separately from the anoxygenic photosystem, reduces plastoquinone to plastoquinol and subsequently oxidizes plastoquinol by two pathways acting in concert: one being the universally recognized DBMIB-sensitive pathway via the Rieske iron-sulfur center of the cytochrome bf complex and the other, a hitherto unrecognized, DBMIB-insensitive electron transport pathway around P680 that centers on cytochrome b-559. These nonconforming findings form the basis of an alternate hypothesis of photosynthetic electron transport that modifies and complements the Z scheme.Abbreviations PS photosystem - PQ oxidized plastoquinone - PQH2 reduced plastoquinone (plastoquinol) - QA and QB specialized membrane-bound forms of PQ - PC plastocyanin - Fd ferredoxin - BISC FAFB, membrane-bound iron-sulfur centers of PS I - DBM1B 2,5-dibromo-3-methyl-6-isopropyl-n-benzoquinone (dibromothymoquinone) - DNP-INT dinitrophenol ether of iodonitrothymol - NADP+ NADPH, oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate - FCCP carbonylcyanide-p-trifluoromethoxyphenyl-hydrazone - CCCP carbonyl cyanide-3-chlorophenylhydrazone - SF 6847 2,6,-di-(t-butyl)-4-(2,2-dicyanovinyl) phenol - diuron (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EPR electron paramagnetic resonance - DCIP 2,6-dichloro-phenolindophenol - UHDBT 5-(n-undecyl)-6-hydroxy-4-7-dioxobenzothiazole; cytochrome b-559HP-cytochrome b-559LP, high- and low potential states of cytochrome b-559 - oxygenic reductions reductions in which water is the electron donor - BBY PS II preparation made according to Berthold et al. (1981) Dedicated to Professor Achim Trebst on his 65th birthday.Based in part on lecture in Advanced Course on Trends in Photosynthesis Research, Palma de Mallorca, Spain, September 18, 1990.  相似文献   

13.
Peter Horton  Edward Croze 《BBA》1977,462(1):86-101
The role of cytochrome b-559 in Photosystem II reactions has been investigated using hydroxylamine treatment of chloroplast membranes. Incubation of chloroplasts with hydroxylamine in darkness resulted in inhibition of water oxidation and a decrease in the amplitude of cytochrome b-559 reducible by hydroquinone. The loss of water oxidizing activity perfectly correlated with the decrease in amplitude of cytochrome b-559 reduction. Potentiometric titration of cytochrome b-559 after hydroxylamine treatment revealed a component with Em7.8 at +240 mV in addition to a lower potential species at +90 mV. This compared to control chloroplasts in which cytochrome b-559 exists in the typical high potential state, Em7.8 = +383 mV, in addition to some of the low potential (Em7.8 = +77 mV) form. Photosystem II activity could be further inhibited by incubation with hydroxylamine in the light. In these chloroplasts only low rates of photooxidation of artificial electron donors were observed compared to ‘dark’ chloroplasts. In addition, the hydroxylamine light treatment caused a further change in cytochrome b-559 redox properties; a single component, Em7.8 = 90 mV is seen in titration curves. The role of cytochrome b-559 in Photosystem II functioning is discussed on the basis of these observations which suggest a dependence of photooxidizing ability of Photosystem II on the redox properties of this cytochrome.  相似文献   

14.
Changes in the amount of P700-chlorophyll a protein complex, plastocyanin, and cytochrome b6/f complex during greening of pea (Pisum sativum L.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.) leaves were analyzed by an immunochemical quantification method. Neither subunit I nor II of P700-chlorophyll a protein complex could be detected in the etiolated seedlings of all three plants and the accumulation of these subunits was shown to be light dependent. On the other hand, a small amount of plastocyanin was present in the etiolated seedlings of all three plants and its level increased about 30-fold during the subsequent 72-hour greening period. Furthermore, cytochrome f, cytochrome b6, and Rieske Fe-S center protein in cytochrome b6/f complex were also present in the etiolated seedings of all three plants. The level of each subunit component increased differently during greening and their induction pattern differed from species to species. The accumulation of cytochrome b6/f complex was most profoundly affected by light in pea leaves, and the levels of cytochrome f, cytochrome b6, and Rieske Fe-S center protein increased during greening about 10-, 20-, and more than 30-fold, respectively. In comparison to the case of pea seedlings, in wheat and barley leaves the level of each subunit component increased much less markedly. The results suggest that light regulates the accumulation of not only the chlorophyll protein complex but also the components of the electron transport systems.  相似文献   

15.
Greg Smutzer  Jui H. Wang 《BBA》1984,766(1):240-244
A PS II preparation highly active in oxygen generation was prepared from the cyanophyte, Synechococcus lividus. This preparation was enriched in Hill reaction activity, manganese, cytochrome b-559, and possessed only trace amounts of cytochrome b-563. This non-phosphorylating, visually clear preparation appears to be a promising system for the detailed study of Photosystem II.  相似文献   

16.
17.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

18.
Light-induced redox changes of cytochrome b-559   总被引:2,自引:0,他引:2  
Dark incubation of spinach or pea chloroplasts with 10 μm carbonylcyanide m-chlorophenylhydrazone (CCCP) had a negligible effect either on the redox state or the redox potential of the high potential form of cytochrome b-559 (cytochrome b-559hp). A similar result was obtained with spinach chloroplasts on incubation with 3.3 μm carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), but pea chloroplasts showed a decrease of 10–20% in the amount of reduced cytochrome b-559.Light-induced redox changes of cytochrome b-559 were not observed in untreated spinach chloroplasts. In the presence of CCP or FCCP, cytochrome b-559 was photooxidized both in 655 nm actinic light and in far-red light. Addition of the plastoquinone antagonist, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to CCCP- or FCCP-treated chloroplasts had only a small effect on the photooxidation of cytochrome b-559 in 655 light, but it completely inhibited the oxidation in far-red light.Electron flow from water to 2,3′,6-trichlorophenolindophenol was partly inhibited by CCCP or FCCP, but the degree of inhibition does not appear to be sufficient to account for the photooxidation of cytochrome b-559.The photooxidation of cytochrome b-559 by 655 nm light at liquid nitrogen temperature was not influenced by prior treatment of the chloroplasts at room temperature with CCCP, DBMIB, or CCCP + DBMIB.The results cannot be explained by the presence of two independent pools of cytochrome b-559 in CCCP-treated chloroplasts, one photooxidized by Photosystem II and the other photooxidized by Photosystem I and photoreduced by Photosystem II.  相似文献   

19.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

20.
Jeannine Maroc  Jacques Garnier 《BBA》1981,637(3):473-480
Photosystem (PS) II-enriched particles or chloroplast fragments of the wild type and of three nonphotosynthetic mutants of Chlamydomonas reinhardii, which lack chloroplast cytochromes, were analyzed by lithium dodecyl sulfate polyacrylamide gel electrophoresis at 4°C to locate which chlorophyll complexes and which proteins are associated with cytochrome b-559. Two mutants, Fl 39 and Fl 50, have previously been shown to contain, respectively, 3.6- and 2.7-times less hydroquinone-reducible high-potential cytochrome b-559 than the wild type. They have impaired PS II functions. In the presence of ADRY agents: carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p) or 2-(3,4,5-trichloro)-anilino-3,5-dinitrothiophene (ANT 2s), Fl 50 carried out photo-oxidation of cytochrome b-559 with half the amplitude of that of the wild type. No photo-oxidation was observed with Fl 39. We show here that in both these mutants chlorophyll-protein complexes CP III, CP IV and CP V were missing. There were traces of the corresponding apoproteins (45 000, 42 000 and 33 000 daltons, respectively) in Fl 50 but none in Fl 39. In addition, a 19 000 dalton protein was missing in Fl 39 and present in a very small amount in Fl 50. In another mutant, Fl 9, previously characterized as lacking both cytochromes b-563 and c-553 with a normal cytochrome b-559 content, CP III-CP V and the 19 000 dalton protein were detected. CP I (110 000 daltons) and CP II (24 000 daltons) were present in all strains. These observations confirmed the close relationship between deficiencies in cytochrome b-559, lack of CP III and CP IV and anomalies in the photochemistry of PS II. They provided additional evidence that CP V and a 19 000 dalton protein are also involved in this PS II photochemistry. Staining of the gels with 3,3′,5,5′-tetramethylbenzidine and H2O2 allowed us to distinguish clearly four heme protein bands having peroxidase activity. Three of these bands (45 000, 42 000 and 19 000 daltons), which were shown in wild-type, Fl 39 and Fl 50 preparations but not in Fl 9, appeared related to cytochromes b-563 and c-553. The fourth heme protein (14 000 daltons) occurred in wild type and Fl 9 but was missing in Fl 39 and Fl 50; it appeared related to cytochrome b-559.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号