首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
机体和细胞能够感受与识别环境氧浓度的改变,并将低氧信号传入细胞内调控低氧敏感基因的表达。颈动脉体Ⅰ型细胞的氧敏感离子通道能够感受氧分压的降低,通过细胞膜上离子通道的开-关来调节神经递质的释放,以调节呼吸功能。普遍认为细胞的氧感受器是一种血红素蛋白,能感受细胞周围环境氧浓度变化。其中辅酶Ⅱ氧化酶(NADPH oxidase)被认为是最可能的氧感受器(oxygen sensor)。它可把细胞周围环境中  相似文献   

2.
在颈动脉体(CB)化学感受性传递过程中,球细胞释放递质的机制至今尚未阐明。有文献报道无Ca2+时化学感受器释放多巴胺和颈动脉窦神经电活动均减少。另有实验研究显示,在细胞外液无Ca2+时基础状态下和低氧诱导的球细胞内cAMP明显升高,腺苷酸环化酶激活剂...  相似文献   

3.
Hu Y  Zou F  Cai CQ  Wu HY  Yun HX  Chen YT  Jin GE  Ge RL 《生理学报》2006,58(5):477-482
本文旨在研究大鼠传导性肺动脉平滑肌细胞(pulmonary artery smooth muscle cells,PASMCs)的电生理特征及对急性低氧的反应。用酶解法急性分离出1-2级分支的PASMCs,通过全细胞膜片钳方法研究常氧及急性低氧状况下细胞钾电流的差异,并在常氧下先后使用iBTX和4-AP阻断大电导钙激活钾离子(large conductance Ca-activated K^+,BKCa)通道及延迟整流性钾离子(delayed rectifier K^+,KDR)通道后,观察细胞钾电流特征。根据细胞的大小、形态及电生理特征可将PASMCs分为Ⅰ、Ⅱ、Ⅲ类。iBTX对Ⅰ类细胞几乎无作用,而4-AP几乎完全阻断它的钾电流;Ⅱ类细胞的钾电流在加入iBTX后大部分被抑制,其余的对4.AP敏感;Ⅲ类细胞的钾电流对iBTX及4-AP均敏感。急性低氧对三类细胞的钾电流均有不同程度的抑制,并使Ⅰ类细胞的膜电位显著升高,而Ⅱ、Ⅲ类细胞膜电位升高的程度不如Ⅰ类显著。结果表明,传导性肺动脉有3种形态及电生理特性不同的PASMCs,在急性低氧时其钾电流不同程度地受到抑制,同时静息膜电位也有不同程度去极化,这些可能参与急性低氧时传导性肺动脉舒缩反应的调节。KDR及BKCa通道在3种细胞中的比例不同可能是急性低氧对3种PASMCs影响不同的离子基础。  相似文献   

4.
本文的目的是研究长时间低氧对离体培养的大鼠颈动脉体球细胞(glomuscell)的影响。对实验组Sprague-Dawley(SD)大鼠,首先将其置于模拟5000m高度低氧环境的低压舱中饲养7—10d,然后麻醉动物,取出颈动脉体,将其分离成单个细胞和细胞群体(clusters)。这些细胞在低氧条件(11%O2,5%CO2,84%N2)下培养2—3d。取自正常SD大鼠的颈动脉体细胞被分为两组,分别将其培养在常氧(21%O2,5%CO2,74%N2)或低氧环境中。球细胞的细胞内pH(pHi)和膜电位(MP)分别用H+选择性微电极和常规微电极同时测量。结果表明:长时间低氧降低球细胞的pHi,增加MP,其变化程度远远大于急性低氧的影响,而且当将细胞置于常氧中测量时其值不恢复。  相似文献   

5.
Zhao JP  Guo Z  Zhou ZG  Chen J  Hu HL  Wang T  Zhang ZX 《生理学报》2007,59(2):157-162
本文旨在探讨线粒体ATP敏感钾(mitochondrial ATP-sensitive K+,MitoKATP)通道对大鼠肺动脉平滑肌细胞低氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)表达和细胞增殖的影响。原代培养大鼠肺动脉平滑肌细胞,分为常氧对照组、常氧+diazoxide(MitoKATP通道的选择性开放剂)组、常氧+5-hydroxydecanoate(5-HD,MitoKATP通道的选择性阻断剂)组、低氧对照组、低氧+diazoxide组、低氧+5-HD组,共6组,分别应用罗丹明123荧光技术检测各组大鼠肺动脉平滑肌细胞的线粒体膜电位,免疫组化检测HIF-1α的表达及酶联免疫检测仪检测细胞增殖的变化。结果显示,常氧+ diazoxide组与常氧对照组比较,罗丹明123荧光、HIF-1α表达及细胞增殖明显增强(P〈0.05);低氧+diazoxide组与低氧对照组比较,罗丹明123荧光、HIF-1α表达及细胞增殖明显增强(P〈0.05):常氧+5-HD组与常氧对照组比较,罗丹明123荧光、HIF-1α表达、细胞增殖没有明显变化(P〉0.05);但低氧+5-HD组与低氧对照组比较,罗丹明123荧光明显减弱、HIF-1α表达及细胞增殖有所减弱(P〈0.05)。结果提示:MitoKATP通道的开放能引起大鼠肺动脉平滑肌细胞线粒体膜去极化,并可以促进HIF-1α的表达及细胞增殖。  相似文献   

6.
腺苷易化大鼠颈动脉窦压力感受器的活动   总被引:8,自引:5,他引:3  
Chen S  Fan ZZ  He RR 《生理学报》1998,50(5):525-531
在36只麻醉大鼠,以隔离灌流颈动脉窦区记录窦神经传入放电的方法观察了腺苷(adenosine,Ado)对颈动脉窦压力感受器传入放电的影响。所得结果如下:(1)以75μmol/LAdo隔离灌流大鼠左侧颈动脉窦区时,窦内压-窦神经传入放电积分(ISP-ISNA)关系曲线向左上方移位,曲线最大斜率(PS)由(18.75±0.12)%/kPa增至(22.21±0.11)%/kPa(P<0.001),最大积分值(PIV)由(209.83±2.57)%增至(239.17±1.75)%;阈压(TP)和饱和压(SP)则分别从(8.57±0.24)和(22.99±0.34)下降至(7.15±0.23)kPa(P<0.001)和(21.21±0,43)kPa(P<0.01)。再分别以125和175μmol/LAdo灌流,机能曲线进一步向左上方移位,PS、TP和SP的变化均呈明显的剂量依赖性。(2)用腺苷选择性A1受体拮抗剂8-cyclopentyl-1,3-dipropylxanthine(0.134mmol/L)预处理后,Ado的上述效应即被阻断。(3)先给予KATP通道阻断剂格列苯脲(10μmol/L)亦可取消腔苷对窦神经传入放电的影响。结果表明,在体隔离灌流大鼠颈动脉窦区条件下,Ado对颈动脉窦压力感受器活动有易化作用,此作用似与腺苷A1受体介导的KATP通道开放有关。  相似文献   

7.
目的:研究线粒体ATP敏感钾通道(mitoKATP)抑制剂5-羟基癸酸盐(5-HD)对慢性低氧肺动脉高压大鼠的影响及其潜在机制。方法:雄性sD大鼠48只,随机分成4组(n=12):①正常对照组;②慢性低氧组;③慢性低氧+5-HD组;④慢性低氧+Diazoxide(mitoKATP开放剂)组;除正常对照组外,其余3组置于氧舱内(氧浓度10%±0.3%),每天低氧8h,并接受不同的干预,共4周。干预结束后右心导管法测各大鼠肺动脉压,RT-PCR和Western blot检测各组大鼠肺动脉PKC—α蛋白和mRNA的表达。结果:①慢性低氧组肺动脉压显著高于正常组(P〈0.01),同时慢性低氧+Diazoxide组与慢性低氧+5.HD组肺动脉压较慢性低氧组显著减低(P〈0.01)。②慢性低氧组PKC—α蛋白及mRNA的相对表达显著高于正常组(P〈0.05)。结论:5-HD对慢性低氧肺动脉高压起保护作用,其机制可能是抑制线粒体ATP敏感钾通道。  相似文献   

8.
何淑舫 《生理学报》1995,47(3):225-230
本文的目的是研究长时间低氧对离体培养的大鼠颈动脉体球细胞(golmus cell)的影响。对实验组Sprague-Dawley(SD)大鼠,首先将其置于模拟5000m高度低氧环境的低压舱中饲养了-10d,然后麻醉动物,取出颈动脉体,将其分离成单个细胞和细胞群体(clusters)。这些细胞在低氧条件(11%O2,5%CO2,845N2)下培养2-3d。取自正常SD大鼠的颈动脉全细胞被分为两组,分别  相似文献   

9.
胍丁胺抑制大鼠颈动脉窦压力感受器活动   总被引:3,自引:0,他引:3  
Qin XM  Fan ZZ  He RR 《生理学报》2001,53(2):137-141
在麻醉大鼠隔离灌流颈动脉窦区条件下,记录窦神经传入放电,观察胍丁胺(agmatine,Agm)对动脉压力感受器活动的影响,结果如下:(1)以1mmol/L Agm隔离灌流大鼠颈动脉窦区时,窦内压-窦神经传入放电积分(ISP-ISNA)关系曲线向右下方移位,曲线的最大斜率(PS)降低,窦神经传入放电量最大积分值(PIV)减小,再分别以5,10mmol/L Agm灌流时,机能曲线向右下方移位更为明显,PS及PIV降低更加明显,从而表明Agm抑制压力感受器活动且呈剂量依赖性,(2)α2-肾上腺素受体(α2-adrenoceptor,α-AR)和咪唑啉受体(IR)的阻断剂咪唑克生(0.1mmol/L)可阻断Agm的上述效应。(3)预先灌流α-AR能亨宾(15umol/L)可部分阻断Agm的抑制效应。(4)预先灌流Ca^2 通道激动剂Bay K8644(500mmol/L)亦可取消Agm对窦神经传入放电的影响,以上结果表明,Agm对基动脉窦压力感受器活动有抑制作用,此作用由IR和α-AR介导,并与颈动脉窦压力感受器活动时Ca^2 内流减少有关。  相似文献   

10.
最近的研究显示,颈动脉体(carotid body,CB)除具有缺氧等化学感受功能外,还对白细胞介素-1B(IL-1β)的刺激起反应。但是,IL-1β刺激对颈动脉体的缺氧感受功能有何影响还不清楚。本研究运用在体(in vivo)细胞外神经干电位记录的方法,利用麻醉大鼠,观察了CB局部给予IL-1β对实验性急性缺氧(experimental acute hypoxia,EAH)诱导的CB传入神经窦神经(carotid sinus nerve,CSN)放电频率的影响。结果发现,EAH可以诱导麻醉状态下大鼠的CSN放电频率增高;颈动脉体局部给予ATP(0、1mmol/L)和ACh(0,5mmol/L)在一定程度上可模拟缺氧诱导的CSN放电;局部给予ILlp(40μg/L)可诱导窦神经放电频率增加。但同时给予IL-1B和EAH,所引起的放电频率增高效应与单独给予EAH或IL-1β所诱导的放电频率的增高效应间无显著性差别,且IL-1β对ATP和ACh诱导的窦神经放电的增高效应也无显著影响。这些结果提示,IL-1β对EAH诱导的窦神经放电无调节作用。  相似文献   

11.
Early detection of an O2 deficit in the bloodstream is essential to initiate corrective changes in the breathing pattern of mammals. Carotid bodies serve an essential role in this respect; their type I cells depolarize when O2 levels fall, causing voltage-gated Ca2+ entry. Subsequent neurosecretion elicits increased afferent chemosensory fiber discharge to induce appropriate changes in respiratory function (1). Although depolarization of type I cells by hypoxia is known to arise from K+ channel inhibition, the identity of the signaling pathway has been contested, and the coupling mechanism is unknown (2). We tested the hypothesis that AMP-activated protein kinase (AMPK) is the effector of hypoxic chemotransduction. AMPK is co-localized at the plasma membrane of type I cells with O2-sensitive K+ channels. In isolated type I cells, activation of AMPK using 5-aminoimidazole-4-carboxamide riboside (AICAR) inhibited O2-sensitive K+ currents (carried by large conductance Ca2+-activated (BKCa) channels and TASK (tandem pore, acid-sensing potassium channel)-like channels, leading to plasma membrane depolarization, Ca2+ influx, and increased chemosensory fiber discharge. Conversely, the AMPK antagonist compound C reversed the effects of hypoxia and AICAR on type I cell and carotid body activation. These results suggest that AMPK activation is both sufficient and necessary for the effects of hypoxia. Furthermore, AMPK activation inhibited currents carried by recombinant BKCa channels, whereas purified AMPK phosphorylated thealpha subunit of the channel in immunoprecipitates, an effect that was stimulated by AMP and inhibited by compound C. Our findings demonstrate a central role for AMPK in stimulus-response coupling by hypoxia and identify for the first time a link between metabolic stress and ion channel regulation in an O2-sensing system.  相似文献   

12.
Carotid bodies are sensory organs that detect changes in arterial blood oxygen, and the ensuing reflexes are critical for maintaining homeostasis during hypoxemia. During the past decade, tremendous progress has been made toward understanding the cellular mechanisms underlying oxygen sensing at the carotid body. The purpose of this minireview is to highlight some recent concepts on sensory transduction and transmission at the carotid body. A bulk of evidence suggests that glomus (type I) cells are the initial site of transduction and that they release transmitters in response to hypoxia, which causes depolarization of nearby afferent nerve endings, leading to an increase in sensory discharge. There are two main hypotheses to explain the transduction process that triggers transmitter release. One hypothesis assumes that a biochemical event associated with a heme protein triggers the transduction cascade. The other hypothesis suggests that a K(+) channel protein is the oxygen sensor and that inhibition of this channel by hypoxia leading to depolarization is a seminal event in transduction. Although there is body of evidence supporting and questioning each of these, this review will try to point out that the truth lies somewhere in an interrelation between the two. Several transmitters have been identified in glomus cells, and they are released in response to hypoxia. However, their precise roles in sensory transmission remain uncertain. It is hoped that future studies involving transgenic animals with targeted disruption of genes encoding transmitters and their receptors may resolve some of the key issues surrounding the sensory transmission at the carotid body. Further studies are necessary to identify whether a single sensor or multiple oxygen sensors are needed for the transduction process.  相似文献   

13.
Carotid body glomus cells sense hypoxia through the inhibition of plasmalemmal K(+) channels, which leads to Ca(2+) influx and transmitter release. Although the mechanism of O(2) sensing remains enigmatic, it does not seem to depend on cellular redox status or inhibition of mitochondrial electron transport. Hypoxia inducible factors appear to be necessary for the expression of the O(2) sensor and carotid body remodeling in chronic hypoxia, but are not directly involved in acute O(2) sensing. Glomus cells are also rapidly activated by reductions of glucose concentration due to inhibition of K(+) channels. These cells function as combined O(2) and glucose sensors that help to prevent neuronal damage by acute hypoxia and/or hypoglycemia.  相似文献   

14.
The carotid body (CB) is a chemosensory organ that detects changes in chemical composition of arterial blood and maintains homeostasis via reflex control of ventilation. Thus, in response to a fall in arterial PO(2) (hypoxia), CB chemoreceptors (type I cells) depolarize, and release neurotransmitters onto afferent sensory nerve endings. Recent studies implicate ATP as a key excitatory neurotransmitter released during CB chemoexcitation, but direct evidence is lacking. Here we use the luciferin-luciferase bioluminescence assay to detect ATP, released from rat chemoreceptors in CB cultures, fresh tissue slices, and whole CB. Hypoxia evoked an increase in extracellular ATP, that was inhibited by L-type Ca(2+)channel blockers and reduced by the nucleoside hydrolase, apyrase. Additionally, iberiotoxin (IbTX; 100 nM), a blocker of O(2)-sensitive Ca(2+)-dependent K(+) (BK) channels, stimulated ATP release and largely occluded the effect of hypoxia. These data strongly support a neurotransmitter role for ATP in carotid body function.  相似文献   

15.
Systemic hypoxia in mammals is sensed and transduced by the carotid body into increased action potential (AP) frequency on the sinus nerve, resulting in increased ventilation. The mechanism of hypoxia transduction is not resolved, but previous work suggested that fast Na(+) channels play an important role in determining the rate and timing of APs (Donnelly, DF, Panisello JM, and Boggs D. J Physiol. 511: 301-311, 1998). We speculated that Na(+) channel activity between APs, termed persistent Na(+) current (I(NaP)), is responsible for AP generation that and riluzole and phenytoin, which inhibit this current, would impair organ function. Using whole cell patch clamp recording of intact petrosal neurons with projections to the carotid body, we demonstrated that I(NaP) is present in chemoreceptor afferent neurons and is inhibited by riluzole. Furthermore, discharge frequencies of single-unit, chemoreceptor activity, in vitro, during normoxia (Po(2) 150 Torr) and during acute hypoxia (Po(2) 90 Torr) were significantly reduced by riluzole concentrations at or above 5 microM, and by phenytoin at 100 microM, without significant affect on nerve conduction time, AP magnitude (inferred from extracellular field), and AP duration. The effect of both drugs appeared solely postsynaptic because hypoxia-induced catecholamine release in the carotid body was not altered by either drug. The respiratory response of unanesthetized, unrestrained 2-wk-old rats to acute hypoxia (12% inspired O(2) fraction), which was measured with whole body plethysmography, was significantly reduced after treatment with riluzole (2 mg/kg ip) and phenytoin (20 mg/kg ip). We conclude that I(NaP) is present in chemoreceptor afferent neurons and serves an important role in peripheral chemoreceptor function and, hence, in the ventilatory response to hypoxia.  相似文献   

16.
Membrane potential in oxygen-sensitive type I cells in carotid body is controlled by diverse sets of voltage-dependent and -independent K(+) channels. Coupling of Po(2) to the open-closed state of channels may involve production of reactive oxygen species (ROS) by NADPH oxidase. One hypothesis suggests that ROS are produced in proportion to the prevailing Po(2) and a subset of K(+) channels closes as ROS levels decrease. We evaluated ROS levels in normal and p47(phox) gene-deleted [NADPH oxidase knockout (KO)] type I cells using the ROS-sensitive dye dihydroethidium (DHE). In normal cells, hypoxia elicited an increase in ROS, which was blocked by the specific NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, 3 mM). KO type I cells did not respond to hypoxia, but the mitochondrial uncoupler azide (5 microM) elicited increased fluorescence in both normal and KO cells. Hypoxia had no effect on ROS production in sensory and sympathetic neurons. Methodological control experiments showed that stimulation of neutrophils with a cocktail containing the chemotactic peptide N-formyl-Met-Leu-Phe (1 microM), arachidonic acid (10 microM), and cytochalasin B (5 microg/ml) elicited a rapid increase in DHE fluorescence. This response was blocked by the NADPH oxidase inhibitor diphenyleneiodonium (10 microM). KO neutrophils did not respond; however, azide (5 microM) elicited a rapid increase in fluorescence. Physiological studies in type I cells demonstrated that hypoxia evoked an enhanced depression of K+ current and increased intracellular Ca2+ levels in KO vs. normal cells. Moreover, AEBSF potentiated hypoxia-induced increases in intracellular Ca2+ and enhanced the depression of K+ current in low O(2). Our findings suggest that local compartmental increases in oxidase activity and ROS production inhibit the activity of type I cells by facilitating K+ channel activity in hypoxia.  相似文献   

17.
The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na(+) channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na(+) channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na(+) channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na(+) channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na(+) concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.  相似文献   

18.
Xu J  Xu F  Tse FW  Tse A 《Journal of neurochemistry》2005,92(6):1419-1430
Summary During hypoxia, ATP was released from type I (glomus) cells in the carotid bodies. We studied the action of ATP on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of type I cells dissociated from rat carotid bodies using a Ca(2+) imaging technique. ATP did not affect the resting [Ca(2+)](i) but strongly suppressed the hypoxia-induced [Ca(2+)](i) elevations in type I cells. The order of purinoreceptor agonist potency in inhibiting the hypoxia response was 2-methylthioATP > ATP > ADP > alpha, beta-methylene ATP > UTP, implicating the involvement of P2Y(1) receptors. Simultaneous measurements of membrane potential and [Ca(2+)](i) show that ATP inhibited the hypoxia-induced Ca(2+) signal by reversing the hypoxia-triggered depolarization. However, ATP did not oppose the hypoxia-mediated inhibition of the oxygen-sensitive TASK-like K(+) background current. Neither the inhibition of the large-conductance Ca(2+)-activated K(+) (maxi-K) channels nor the removal of extracellular Na(+) could affect the inhibitory action of ATP. Under normoxic condition, ATP caused hyperpolarization and increase in cell input resistance. These results suggest that the inhibitory action of ATP is mediated via the closure of background conductance(s) other than the TASK-like K(+), maxi-K or Na(+) channels. In summary, ATP exerts strong negative feedback regulation on hypoxia signaling in rat carotid type I cells.  相似文献   

19.
Acute oxygen sensing in heme oxygenase-2 null mice   总被引:3,自引:0,他引:3       下载免费PDF全文
Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.  相似文献   

20.
Oxygen sensing in the body   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号