首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly (Hf)-resistance genes H16 and H17 were reported to condition resistance to Hf biotype L that is prevalent in many wheat-growing areas of eastern USA, and both of them were previously assigned to wheat chromosome 5A by their linkage to H9. The objectives in this study were to (1) map H16 and H17 independent of their linkage with H9 and (2) identify DNA markers that co-segregate with H16 or H17, and that are useful for selection of these genes in segregating populations and to combine these genes with other Hf-resistance genes in wheat cultivars. Contrary to previously reported locations, H16 and H17 did not show linkage with the molecular markers on chromosome 5A. Instead, both of them are linked with the molecular markers on the short arm of chromosome 1A (1AS). The simple sequence repeat (SSR) marker Xpsp2999 and EST-derived SSR (eSSR) marker Xwem6b are two flanking markers that are linked to H16 at genetic distances of 3.7 and 5.5 cM, respectively. Similarly, H17 is located between markers Xpsp2999 and Xwem6b at genetic distances of 6.2 and 5.1 cM, respectively. Five other SSR and eSSR markers including Xcfa2153, Xbarc263, Xwem3a, Xwmc329, and Xwmc24 were also linked to H16 and H17 at close genetic distances. These closely linked molecular markers should be useful for pyramiding H16 and H17 with other Hessian fly resistance genes in a single wheat genotype. In addition, using Chinese Spring deletion line bin mapping we positioned all of the linked markers and the Hf-resistance genes (H16 and H17) to the distal 14% of chromosome 1AS, where Hf-resistance genes H9, H10, and H11 are located. Our results together with previous studies suggest that Hf-resistance genes H9, H10, H11, H16, and H17 along with the pathogen resistance genes Pm3 and Lr10 appear to occupy a resistance gene cluster in the distal region of chromosome 1AS in wheat. Contribution from Purdue Univ. Agric. Res. Programs Journal Article No. 2007-18105.  相似文献   

2.
A gene (temporarily designated Hdic) conferring resistance to the Hessian fly (Hf) [Mayetiola destructor (Say)] was previously identified from an accession of German cultivated emmer wheat [Triticum turgidum ssp. dicoccum (Schrank ex Schübler) Thell] PI 94641, and was transferred to the Hf-resistant wheat germplasm KS99WGRC42. The inheritance of Hdic resistance exhibited incomplete penetrance because phenotypes of some heterozygous progenies are fully resistant and the others are fully susceptible. Five simple sequence repeat (SSR) markers (Xgwm136,Xcfa2153, Xpsp2999,Xgwm33, and Xbarc263) were linked to the Hdic gene on the short arm of wheat chromosome 1A in the same region as the H9, H10, and H11 loci. Flanking markers Xgwm33 and Xcfa2153 were mapped at distances 0.6 cM proximal and 1.4 cM distal, respectively. Marker analysis revealed that a very small intercalary chromosomal segment containing Hdic was transferred from emmer wheat to KS99WGRC42. This is the first emmer-derived Hf-resistance gene that has been mapped and characterized. The Hdic gene confers a high level of antibiosis to biotypes GP and L, as well as to strains vH9 and vH13 of the Hf, which is different from the biotype reaction patterns of the known Hf-resistance genes on chromosome 1A (H5 and H11 susceptible to biotype L, H9 and H10 susceptible to strain vH9). These results suggested that Hdic is either a new gene or a novel allele of a known H gene on chromosome 1A. The broad spectrum of resistance conferred by the Hdic gene makes it valuable for developing Hf resistant wheat cultivars. Mention of commercial or proprietary product does not constitute an endorsement by USDA.  相似文献   

3.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

4.
刘方慧  牛永春  邓晖  檀根甲 《遗传学报》2007,34(12):1123-1130
小麦农家品种赤壳(苏1900)对当前我国小麦条锈菌(Puccinia striiformis Westend.f.sp.tritici)多个流行小种均有较好抗性。遗传分析表明,该品种对条中32号小种的抗性是由一对显性基因控制。本文采用分离群体分析法(bulked segregant analysis,BSA)和微卫星多态性分析方法,对该基因进行了分子标记和定位研究。用Taichung29×赤壳的F2代分离群体建立抗、感DNA池,共筛选了400多对SSR引物,发现5个标记Xwmc44、Xgwm259、Xwmc367、Xcfa2292、Xbarc80在抗、感DNA池间与在抗、感亲本间同样具有多态性,它们均位于1BL染色体臂上。经用具有140株抗病株、60株感病株共200株植株的F2代分离群体进行的遗传连锁性检测,上述5个标记均与目的基因相连锁,遗传距离分别为8.3cM、9.1cM、17.2cM、20.6cM和31.6cM。用全套21个中国春缺-四体材料进行的检测进一步证实了这5个SSR标记均位于小麦1B染色体上。综合上述结果,将赤壳中的主效抗条锈病基因YrChk定位在1BL染色体臂上。与以前已定位于1B染色体上的抗条锈病基因的比较研究表明,YrChk基因可能是一个新的抗条锈病基因。小麦农家品种中抗病基因资源的发掘和利用将有助于提高我国小麦生产品种中的抗病基因丰富度,有助于改善长期以来小麦生产品种中抗病基因单一化的局面。  相似文献   

5.
H22 is a major resistance gene conferring high-level of antibiosis to Hessian fly [Mayetiola destructor (Say)] larvae. It was previously assigned to wheat chromosome 1D through monosomic analysis (Raupp et al. in J Hered 84:142–145, 1993). The objective of this study was to identify molecular markers that can be used for marker-assisted selection for wheat breeding, and to further map this gene toward map-based cloning. Forty-five simple sequence repeat (SSR) and sequence-tagged site (STS) markers specific to chromosome 1D were evaluated for linkage to H22 using a segregating population consisting of 192 F2:3 families, which were derived from the cross Tugela-Dn1 × KS85WGRC01(H22). The STS Xhor2kv and SSR Xgdm33 are two flanking markers that are tightly linked to H22 at genetic distances of 0.3 and 1.0 cM, respectively. Five other SSR markers including Xgpw7082, Xwmc147, Xcfd15, Xwmc432 and Xwmc336 were also linked to H22 at the distance from 0.8 to 20.8 cM. Analysis of Chinese Spring (CS) deletion lines revealed that all the H22-linked markers are located distal to the breakpoint of del 1DS-5, indicating that the H22 gene is located at the distal 30% region on the short arm of wheat chromosome 1D. Genomic comparison suggested that the H22 gene is located in the same or similar chromosomal region as the leaf rust resistance genes Lr21 and Lr40 on 1DS, and orthologous to the H9 gene cluster of 1AS.  相似文献   

6.
Wheat pre-harvest sprouting (PHS) can cause significant reduction in yield and end-use quality of wheat grains in many wheat-growing areas worldwide. To identify a quantitative trait locus (QTL) for PHS resistance in wheat, seed dormancy and sprouting of matured spikes were investigated in a population of 162 recombinant inbred lines (RILs) derived from a cross between the white PHS-resistant Chinese landrace Totoumai A and the white PHS-susceptible cultivar Siyang 936. Following screening of 1,125 SSR primers, 236 were found to be polymorphic between parents, and were used to screen the mapping population. Both seed dormancy and PHS of matured spikes were evaluated by the percentage of germinated kernels under controlled moist conditions. Twelve SSR markers associated with both PHS and seed dormancy were located on the long arm of chromosome 4A. One QTL for both seed dormancy and PHS resistance was detected on chromosome 4AL. Two SSR markers, Xbarc 170 and Xgwm 397, are 9.14 cM apart, and flanked the QTL that explained 28.3% of the phenotypic variation for seed dormancy and 30.6% for PHS resistance. This QTL most likely contributed to both long seed dormancy period and enhanced PHS resistance. Therefore, this QTL is most likely responsible for both seed dormancy and PHS resistance. The SSR markers linked to the QTL can be used for marker-assisted selection of PHS-resistant white wheat cultivars. Shi-Bin Cai and Cui-Xia Chen contributed equally to this work.  相似文献   

7.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred means of control of the disease. The winter wheat cultivar Xiaoyan 54 has high-temperature resistance to stripe rust. To identify genes for stripe rust resistance, Xiaoyan 54 was crossed with Mingxian 169, a winter wheat genotype susceptible to all Chinese races of the pathogen. Seedlings and adult plants of the parents and F1, F2, F3 and F4 progeny were tested with Chinese race CYR32 under controlled greenhouse conditions and in the field. Xiaoyan 54 has two recessive resistance genes, designated as Yrxy1 and Yrxy2, conferring high-temperature resistance. Simple sequence repeat (SSR) primers were used to identify molecular markers flanking Yrxy2 using 181 plants from one segregating F3 line. A total of nine markers, two of which flanked the locus at genetic distances of 4.0 and 6.4 cM on the long arm of chromosome 2A were identified. Resistance gene analog polymorphism (RGAP) and SSR techniques were used to identify molecular markers linked to Yrxy1. A linkage group of nine RGAP and two SSR markers was constructed for Yrxy1 using 177 plants of another segregating F3 line. Two RGAP markers were closely linked to the locus with genetic distances of 2.3 and 3.5 cM. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers M8 and M9 and the two SSR markers located Yrxy1 on the short arm of chromosome 7A. The SSR markers Xbarc49 and Xwmc422 were 15.8 and 26.1 cM, respectively, from the gene. The closely linked molecular markers should be useful for incorporating the resistance genes into commercial cultivars and combining them with other genes for stripe rust resistance.  相似文献   

8.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most damaging diseases in common wheat (Triticum aestivum L.). With the objective of identifying and tagging new genes for resistance to stripe rust, F1, F2 and F3 populations from the cross Zhou 8425B/Chinese Spring were inoculated with Chinese PST isolate CYR32 in the greenhouse. A total of 790 SSR primers were used to test the parents and resistant and susceptible bulks. The resulting seven polymorphic markers on chromosome 7BL were used for genotyping F2 and F3 populations. Results indicated that Zhou 8425B carries a single dominant resistance gene, temporarily designated YrZH84, closely linked to SSR markers Xcfa2040-7B and Xbarc32-7B with genetic distances of 1.4 and 4.8 cM, respectively. In a seedling test with 25 PST isolates, the reaction patterns of YrZH84 were different from those of lines carrying Yr2 and Yr6. It was concluded that YrZH84 is probably a new stripe rust resistance gene.  相似文献   

9.
Septoria tritici blotch (STB) caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is one of the most important foliar diseases of wheat. We assessed three doubled-haploid (DH) populations derived from Chara (STB-susceptible)/WW2449 (STB-resistant), Whistler (STB-susceptible)/WW1842 (STB-resistant) and Krichauff (STB susceptible)/WW2451 (STB-resistant) for resistance to a single-pycnidium isolate 79.2.1A of M. graminicola at the seedling stage. STB resistance in each of the three DH populations was conditioned by a single major gene designated as StbWW2449, StbWW1842 and StbWW2451. Linkage analyses and physical mapping indicated that the StbWW loci were located on the short arm of chromosome 1B (IBS). Four simple sequence repeat (SSR) markers linked with STB resistance: Xwmc230, Xbarc119b, Xksum045 and Xbarc008 were located to the distal bin of 1BS.sat1BS-4 (FL: 0.52–1.00) in the 1BS physical map. Xwmc230, Xbarc119b and Xksum045 markers, mapped within 7 cM from StbWW were validated for their linkage and predicted the STB resistance with over 94% accuracy in the 79 advanced breeding lines having WW2449 as one of the parents. The marker interval Xwmc230/Xksum045-Xbarc119b also explained up to 38% of the phenotypic variance at the adult plant stage in all three DH mapping populations. These results have proven that SSR markers are useful in monitoring STB resistance both at seedling and adult plant stages and hence are suitable for routine marker-assisted selection in the wheat breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
H13 is inherited as a major dominant resistance gene in wheat. It was previously mapped to chromosome 6DL and expresses a high level of antibiosis against Hessian fly (Hf) [Mayetiola destructor (Say)] larvae. The objective of this study was to identify tightly linked molecular markers for marker-assisted selection in wheat breeding and as a starting point toward the map-based cloning of H13. Fifty-two chromosome 6D-specific microsatellite (simple sequence repeat) markers were tested for linkage to H13 using near-isogenic lines Molly (PI 562619) and Newton-207, and a segregating population consisting of 192 F2:3 families derived from the cross PI 372129 (Dn4) × Molly (H13). Marker Xcfd132 co-segregated with H13, and several other markers were tightly linked to H13 in the distal region of wheat chromosome 6DS. Deletion analysis assigned H13 to a small region closely proximal to the breakpoint of del6DS-6 (FL 0.99). Further evaluation and comparison of the H13-linked markers revealed that the same chromosome region may also contain H23 in KS89WGRC03, an unnamed H gene (HWGRC4) in KS89WGRC04, the wheat curl mite resistance gene Cmc4, and a defense response gene Ppo for polyphenol oxidase. Thus, these genes comprise a cluster of arthropod resistance genes. Marker analysis also revealed that a very small intercalary chromosomal segment carrying H13 was transferred from the H13 donor parent to the wheat line Molly.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

11.

Background

One of the reasons hard red winter wheat cultivar ‘Duster’ (PI 644016) is widely grown in the southern Great Plains is that it confers a consistently high level of resistance to biotype GP of Hessian fly (Hf). However, little is known about the genetic mechanism underlying Hf resistance in Duster. This study aimed to unravel complex structures of the Hf region on chromosome 1AS in wheat by using genotyping-by-sequencing (GBS) markers and single nucleotide polymorphism (SNP) markers.

Results

Doubled haploid (DH) lines generated from a cross between two winter wheat cultivars, ‘Duster’ and ‘Billings’ , were used to identify genes in Duster responsible for effective and consistent resistance to Hf. Segregation in reaction of the 282 DH lines to Hf biotype GP fit a one-gene model. The DH population was genotyped using 2,358 markers developed using the GBS approach. A major QTL, explaining 88% of the total phenotypic variation, was mapped to a chromosome region that spanned 178 cM and contained 205 GBS markers plus 1 SSR marker and 1 gene marker, with 0.86 cM per marker in genetic distance. The analyses of GBS marker sequences and further mapping of SSR and gene markers enabled location of the QTL-containing linkage group on the short arm of chromosome 1A. Comparative mapping of the common markers for the gene for QHf.osu-1Ad in Duster and the Hf-resistance gene for QHf.osu-1A74 in cultivar ‘2174’ showed that the two Hf resistance genes are located on the same chromosome arm 1AS, only 11.2 cM apart in genetic distance. The gene at QHf.osu-1Ad in Duster has been delimited within a 2.7 cM region.

Conclusion

Two distinct resistance genes exist on the short arm of chromosome 1A as found in the two hard red winter cultivars, 2174 and Duster. Whereas the Hf resistance gene in 2174 is likely allelic to one or more of the previously mapped resistance genes (H9, H10, H11, H16, or H17) in wheat, the gene in Duster is novel and confers a more consistent phenotype than 2174 in response to biotype GP infestation in controlled-environment assays.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1297-7) contains supplementary material, which is available to authorized users.  相似文献   

12.
The wheat-Stagonospora nodorum pathosystem involves a number of pathogen-produced host-selective toxins that interact with host genes in an inverse gene-for-gene manner to cause disease. The wheat intervarietal recombinant inbred population derived from BR34 and Grandin (BG population) segregates for the toxin sensitivity genes Tsn1, Snn2, and Snn3, which confer sensitivity to the toxins ToxA, SnTox2, and SnTox3, respectively. Here, we report the addition of 141 molecular markers to the BG population linkage maps, the identification and/or development of markers tightly linked to Tsn1 and Snn2, and the validation of the markers using a set of diverse wheat accessions. The BG population maps now contain 787 markers, and new simple sequence repeat (SSR) markers closely linked to Snn2 on chromosome arm 2DS were identified. In an effort to target more markers to the Snn2 locus, STS markers were developed from 2DS bin-mapped ESTs resulting in the development and mapping of 36 markers mostly to the short arms of group 2 chromosomes. Together, SSR and EST-STS markers delineated Snn2 to a 4.0 cM interval. SSRs developed in related work for Tsn1 were mapped in the BG population and delineated the gene to a 1.0 cM interval. Evaluation of the markers for Tsn1 and Snn2 in a diverse set of wheat genotypes validated their utility for marker-assisted selection, which is particularly efficient for removing toxin sensitivity alleles from elite germplasm and varieties. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

13.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most widespread and destructive diseases of wheat worldwide. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Zhongliang 12 has strong resistance to abiotic stresses, wide adaptability, higher resistance to stripe rust and excellent biological characteristics. To identify the resistance gene(s) against stripe rust, Zhongliang 12 was crossed with stripe rust susceptible genotype Mingxian 169, and F1, F2, F2 : 3 and BC1 progenies were tested with Chinese Pst race CYR30 and CYR31 in seedling stage in greenhouse. Zhongliang 12 possessed different dominant genes for resistance to each race. Linkage maps were constructed with four simple sequence repeats (SSRs) markers, Xwmc695, Xcfd20, Xbarc121 and Xbarc49, for the gene on wheat chromosome 7AL conferring resistance to CYR30 (temporarily designated as Yrzhong12‐1) with genetic distance ranging from 3.1 to 10.8 cM and four SSR markers, Xpsp3003, Xcfd2129, Xwmc673 and Xwmc51, for the gene on wheat chromosome 1AL conferring resistance to CYR31 (temporarily designated as Yrzhong12‐2) with genetic distance ranging from 3.9 cM to 9.3 cM. The molecular markers closely linked to each gene should be useful in marker‐assisted selection in breeding programmes for against stripe rust.  相似文献   

14.
MA Asad  X Xia  C Wang  Z He 《Hereditas》2012,149(4):146-152
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious yield-limiting factor for wheat production worldwide. The objective of this study was to identify and map a stripe rust resistance gene in wheat line Shaannong 104 using SSR markers. F(1) , F(2) and F(3) populations from Shaannong 104/Mingxian 169 were inoculated with Chinese Pst race CYR32 in a greenhouse. Shaannong 104 carried a single dominant gene, YrSN104. Six potential polymorphic SSR markers identified in bulk segregant analysis were used to genotype F(2) and F(3) families. YrSN104 was closely linked with all six SSR markers on chromosome 1BS with genetic distances of 2.0 cM (Xgwm18, Xgwm273, Xbarc187), 2.6 cM (Xgwm11, Xbarc137) and 5.9 cM (Xbarc240). Pedigree analysis, pathogenicity tests using 26 Pst races, haplotyping of associated markers on isogenic lines carrying known stripe rust resistance genes, and associations with markers suggested that YrSN104 was a new resistance gene or an allele at the Yr24/Yr26 locus on chromosome 1BS. Deployment of YrSN104 singly or in combination to elite genotypes could play an effective role to lessen yield losses caused by stripe rust.  相似文献   

15.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

16.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.  相似文献   

17.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G71200 and H19520, were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G71200 and H19520, and AFLP EcoRI-AGC/MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19520 could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.  相似文献   

18.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

19.
Powdery mildew is a major fungal disease in wheat growing areas worldwide. A novel source of resistance to wheat powdery mildew present in the germplasm line NC97BGTD7 was genetically characterized as a monogenic trait in greenhouse and field trials using F2 derived lines from a NC97BGTD7 X Saluda cross. Microsatellite markers were used to map and tag this resistance gene, now designated Pm34. Three co-dominant microsatellite markers linked to Pm34 were identified and their most likely order was established as: Xbarc177-5D, 5.4cM, Pm34, 2.6cM, Xbarc144-5D, 14cM, Xgwm272-5D. These microsatellite markers were previously mapped to the long arm of the 5D chromosome and their positions were confirmed using Chinese Spring nullitetrasomic Nulli5D-tetra5A and ditelosomic Dt5DL lines. Pm2, the only other known Pm gene on chromosome 5D, has been mapped to the short arm and its specificity is different from that of Pm34.  相似文献   

20.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号