首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Friable embryogenic callus and somatic embryos of 4 Gladiolus cultivars were obtained on Murashige and Skoog (MS) medium with various concentration of auxins from the following explants: corm slices, young leaf bases and whole, intact plantlets. Somatic embryos transferred on MS hormone-free medium regenerated into plantlets. All plantlets obtained through embryogenesis did not differ phenotypically from the parental clones. The embryogenic friable callus has been maintained for over 2 years in culture and has retained a very high regeneration capacity.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - KIN kinetin - NAA naphthaleneacetic acid - MS Murashige and Skoog Medium (1962) - E embryogenic callus - NE non-embryogenic callus  相似文献   

2.
Immature and mature zygotic embryos of Paspalum scrobiculatum L. cv. PSC 1 cultured on MS or N6 nutrient medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), formed embryogenic callus. Induction of embryogenic callus and subsequent somatic embryogenesis was possible at a lower concentration of 2,4-D on N6 than MS medium. Immature embryos were highly totipotent, forming somatic embryos at a higher frequency than mature embryos. Addition of amino acids (L-proline or L-tryptophan) to 2,4-D medium resulted in significant enhancement of embryogenesis on culture of mature embryos. Silver nitrate also supported an increased frequency of embryogenesis. Thus it is possible to have high frequency of somatic embryogenesis on culture of mature embryos, which are available in abundance and with ease than immature embryos. The somatic embryos readily germinated and formed plantlets on hormone-free regeneration medium. The regenerated plantlets were successful on transfer to soil and set seed.  相似文献   

3.
Summary Kalopanax pictus (Thunb.) Nakai is a tall tree, and its wood has been used in making furniture, while its stem bark is used for medicinal purposes. Here, we report on the micropropagation of Kalopanax pictus via somatic embryogenesis. Embryogenic callus was induced from immature zygotic embryos. The frequency embryogenic callus induction is influenced by days of seed harvest. Callus formation was primarily observed along the radicle tips of zygotic embryos incubated on Murashige and Skoog (MS) medium with 4.4 μM 2,4-dichlorophenoxyacctic acid (2,4-D). Somatic embryogenesis was observed following transfer of embryogenic callus to MS medium lacking 2,4-D. Somatic embryos at the cotyledonary stage were obtained after 6 wk following culture. Frequency of conversion of somatic embryos into plantlets was low (35%) on a hormone-free MS basal medium, but it increased to 61% when the medium was supplemented with 0.05% charcoal. Gibberellic acid (GA3) treatment markedly enhanced the germination frequency of embryos up to 83%. All plantlets obtained showed 98% survival on moist peat soil (TKS2) artificial soil matrix. About 30 000 Kalopanax pictus plants were propagated via somatic embryogenesis and grown to 3-yr-old plants. These results indicate that production of woody medicinal Kalopanax pictus plantlets through somatic embryogenesis can be practically applicable for propagation.  相似文献   

4.
Mature zygotic embryos of Paspalum scrobiculatum L. cv. PSC 1 on MS or N6 nutrient medium supplemented with various concentrations of 2,4-D (4.5 – 22.5 μM) formed embryogenic callus, which differentiated into somatic embryos within 5 weeks of culture. The somatic embryos after transfer to hormone-free regeneration medium germinated and formed plantlets. Of the two nutrient formulations, N6 was relatively better than MS for somatic embryogenesis. A culture for 11 d on 100 μM 2,4-D was essential for the establishment of an embryogenic callus. Shorter duration, 4-d or 7-d culture on 2,4-D medium, supported some proliferation and subsequent differentiation into shoot-buds or multiple-shoots, in high-frequency cultures. This is first instance in monocots of a controlled regeneration response; either somatic embryogenesis or shoot formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Somatic embryogenesis and plant regeneration of Canada wildrye (Elymus canadensis L.) from tissue culture was investigated by culturing immature embryos and inflorescences on MS medium containing 2 mg/l 2,4-D. The optimum size of explants for maximum embryogenic callus formation was 1.0 to 1.5 mm for embryos and 4 to 6 cm for inflorescences. Plant regeneration from the subcultured embryogenic callus was attempted monthly using hormone-free MS medium or MS medium with 0.5 mg/1 2,4-D and 0.3 mg/l GA3. Three hundred and fifty seven plantlets were regenerated from the callus cultures of both explant sources during a six month period. Ten chlorophyll deficient plants accounting for 2.8% of the total regenerants were observed. One plant with white striped leaves survived and was found to be an octoploid.Abbreviations GA3 gibberellic acid - MS Murashige and Skoog (1962) - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

6.
Summary A novel protocol has been developed for inducing somatic embryogenesis from leaf cultures of Decalepis hamiltonii. Callus was obtained from leaf sections in Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA)+N6-benzyladenine (BA) or 2,4-dichlorophenoxyacetic acid (2,4-D)+BA. Nodular embryogenic callus developed from the cut end of explants on media containing 2,4-D and BA, whereas compact callus developed on media containing NAA and BA. Upon subsequent transfer of explants with primary callus onto MS media containing zeatin and/or gibberellic acid (GA3) and BA, treatment with zeatin (13.68μM) and BA (10.65 μM) resulted in the induction of the highest number of somatic embryos directly from nodular tissue. The maturation of embryos took place along with the induction on the same medium. Embryogenic calluses with somatic embryos were subcultured onto MS basal medium supplemented with 4.56μM zeatin+10.65 μM BA. After 4wk, more extensive differentiation of somatic embryos was observed. The mature embryos developed into complete plantlets on growth regulator-free MS medium. A distinct feature of this study is the induction of somatic embryogenesis from leaf explants of Decalepis hamiltonii, which has not been reported previously. By using this protocol, complete plantlets could be regenerated through indirect somatic embryogenesis or organogenesis from leaf explants in 12–16 wk.  相似文献   

7.
Summary Most published protocols necessitate different media formulations for multistep somatic embryogenesis. This study aims to establish a simple but effective formulation for the regeneration of plantlets of the pharmaceutically active Boesenbergia rotunda (L.) Mansf. Kulturpfl, formerly Boesenbergia/Kaempferia pandurata (Schult), to ensure a superior and consistent supply of materials for commercialization purposes. In this study, a single-medium formulation of Murashige and Skoog (MS) supplemented with 13.54μM 2,4-dichlorophenoxyacetic acid (2,4-D) was found to be the only medium out of eight formulations to promote the complete somatic embryogenesis process for the culture of B. rotunda (L.). Callus cultures were initiated from a total of 280 explants of rhizome meristem. The percentage of cultures forming embryogenic callus was 23.3 ±4.3% on this MS medium augmented by 13.54μM 2,4-D. The best plantlet regeneration rate was attained from the first subcultured callus with a mean of 6.6±0.1 plantlets per 1 cm diameter aggregate of callus. Somatic embryogenesis characteristic of monocots was evident from histological studies. The regenerated plantlets have been successfully established in soil.  相似文献   

8.
Panax japonicus is one of the important medicinal plants. Here, we established the protocol for plant regeneration of P. japonicus via direct somatic embryogenesis. Somatic embryos were directly obtained from the segments of zygotic embryos on MS medium with 4.4 μM 2,4-D. Thereafter, somatic embryos were produced by repetitive secondary somatic embryogenesis. The secondary somatic embryo formation was enhanced by plasmolyzing pretreatment (1.0 M mannitol for 10 h). Frequency of secondary somatic embryo formation from cotyledon segments was lowered by plasmolyzing pretreatment, but the number of somatic embryos per explants was greatly increased. Plasmolyzing pretreatment resulted in retardation of embryo growth and required subculture to fresh medium for further growth of embryos into cotyledonary stage. Without plasmolyzing pretreatment, cotyledonary embryos were obtained after 8 weeks of culture. All the cotyledonary somatic embryos germinated by 5 μM GA3 treatment, but only 15.3% were germinated on hormone-free medium. After 2 months of culture on 1/2 strength WPM medium, plantlets produced flowers spontaneously. In the anthers of in vitro flowers, microsporogenesis occurred normally with low number of pollen grains.  相似文献   

9.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

10.
Summary An efficient plant regeneration system employing cotyledons, hypocotyls, petioles and leaves as explants and characterized by continuous and prolific production of somatic embryos, has been developed with Medicago arborea ssp. arborea. The optimal somatic embryogenic response was obtained using a two-step protocol, where explants were incubated under a 16 h photoperiod for 2 mo. on Murashige and Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 9 μM) and kinetin (9 μM), and followed by transfer to kinetin-free MS medium with 2,4-D (2.25 μM). Removal of the cytokinin and a reduction in the concentration of auxin (2.25 μM) in the second step of culture were critical for enhanced production of somatic embryos. The best explants proved to be cotyledons and petioles (i.e. a mean of 18.0±0.70 somatic embryos at 3 mo. for petiole culture). Somatic embryos were converted into normal plantlets (8.0±0.89%) when cultured on basal MS medium with 5 μM indolebutyric acid. No somatic embryos were obtained when thidiazuron was used in the culture media. Using petioles as explants and N6-benzyladenine (BA), embryogenesis was induced in the second step of culture when BA was removed from the medium and the concentration of 2,4-D was decreased to 2.25 μM.  相似文献   

11.
Summary Indirect somatic embryogenesis, encapsulation, and plant regeneration was achieved with the rare rhoeophytic woody medicinal plant Rotula aquatica Lour. (Boraginaceae). Friable callus developed from leaf and internode explants on Murashige and Skoog (MS) medium with 0.45 μM 2,4-dichlorophenoxyacetic, acid (2,4-D) was most effective for the induction of somatic embryos. Subculture of the callus onto half-strength MS medium with the same concentration of 2,4-D resulted in highly embryogenic callus. Suspension culture was superior to solid medium culture for somatic embryogenesis. Embryogenic callus.during subsequent transfer to suspension cultures of half-strength MS medium having 0.23 μM 2,4-D induced the highest number of somatic embryos (a mean of 25.6 embryos per 100 mg callus) and the embryos were grown up to the torpedo stage. Transfer of embryos to half-strength MS basal solid medium allowed development, of 50% of the embryos to the cotyledonary stage. Of the cotyledonary embryos, 90% underwent conversion to plantlets on the same medium. Encapsulated cotyledonary embryos exhibited 100% conversion to plantlets. Ninety-five percent of the plantlets established in field conditions survived, and were morphologically identical to the mother plant.  相似文献   

12.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

13.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

14.
In vitro propagation of an anticancerous drug synthesizing plant, Ophiorrhiza prostrata D. Don, was established through indirect somatic embryogenesis. Friable embryogenic calluses were initiated from O. prostrata leaf and internode explants on Murashige and Skoog (MS) media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with N6-benzyladenine (BA) or kinetin (KIN). Somatic embryos were developed after subculture of the friable calluses onto half strength MS media containing 0.45 or 2.26 μM 2,4-D alone or in combination with BA or KIN. Medium supplemented with 2.26 μM 2,4-D and 2.22 μM BA was optimal, supporting the production of a mean of 5.8 globular embryos. Subculture of globular embryo-bearing calluses on half strength MS medium without growth regulators produced the highest embryo frequency, and the majority of them developing to early torpedo stage. Somatic embryos underwent maturation and converted to plantlets at high frequency (90 %) on half strength MS medium supplemented with 0.44 μM BA. Somatic embryo-derived plantlets with well-developed roots were established in field conditions with a 90 % survival rate.  相似文献   

15.
Somatic embryos were obtained from immature zygotic embryos of Cedrela fissilis Well. (Meliaceae), after a culture period of 12 months, with regular subcultures every 6–8 weeks. Callus was developed on explants in 2 months on Murashige and Skoog (MS) medium containing 2,4 dichlorophenoxyacetic acid (2,4-D) or picloram (PIC). When the calli were transferred to fresh medium, embryogenic tissue appeared on MS + 45 μM 2,4-D, or 22.5 μM 2,4-D + 0.4 μM 6-benzyladenine (BA), or 20.7 μM PIC after 6 months. Sub-culture of embryogenic tissue in MS medium supplemented with 4.5 μM 2,4-D resulted in the differentiation into somatic embryos after further 4 months. Repeated secondary somatic embryogenesis was achieved by regular subculture on this medium. Maturation and conversion of somatic embryos into plantlets was achieved on MS medium without plant growth regulators and the conversion frequency was approximately 12.5 %. The plantlets were successfully acclimatized in pots with soil. Histological studies showed that somatic embryos had no detectable connection with the mother explants and that somatic embryos in advanced stages were bipolar with shoot and root apical meristems, they contained vascular system and showed typical characteristics of a somatic dicotyledonous embryo.  相似文献   

16.
M. Kato 《Plant cell reports》1996,15(12):920-923
Immature leaves of in vitro grown shoots of tea were cultured on various levels of 2,4-D. Somatic embryos were induced directly on leaves or via embryogenic callus produced at the basal regions of the leaves. Induction of embryogenesis appeared to be correlated with the maturity of the leaf explants, with younger leaves responding better. The embryogenic response of leaf explants also was correlated with the period of culture in 2,4-D containing liquid medium. Embryogenic calli or repetitive somatic embryos maintained their regeneration capacity for more than 3 years. Histological observation revealed somatic embryos were formed on various regions of the leaf midrib. Somatic embryos germinated and developed into plantlets on agar medium containing BA and IBA.Abbreviations BA 6-benzylaminopurine - IBA indole-3-butyricacid - 2,4-D 2,4-dichloro phenoxyacetic acid  相似文献   

17.
Lee KP  Lee DW 《Plant cell reports》2003,22(2):105-109
Regeneration via somatic embryogenesis from callus was studied in Dicentra spectabilis. To obtain somatic embryogenic callus, we cultured D. spectabilis seeds on MS basal media supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest percentage of embryogenic callus formation was observed on media containing 1.0 mg/l 2,4-D under dark conditions. Somatic embryogenesis was studied by transferring the callus onto MS basal medium containing different concentrations (0.0, 0.1, 0.5, 1.0, 2.0 mg/l) of KIN (kinetin) and/or BAP. Somatic embryogenesis on MS basal media with 1.0 mg/l of KIN was excellent under light conditions. Somatic embryos were rooted by transferring them to half-strength MS basal media containing 2 g/l Phytagel. About 64.2% of the somatic embryos converted to rooted plantlets, 4% showed secondary embryogenesis and 31.8% did not develop and died. Rooted plantlets showed a 46% survival rate when acclimatized ex vitro.Abbreviations BAP 6-Benzylaminopurine - 2.4-D 2,4-Dichlorophenoxyacetic acid - KIN Kinetin - SEM Scanning electron microscopyCommunicated by H. Lörz  相似文献   

18.
Summary Adventive organogenesis and somatic embryogenesis were induced from leaf explants taken from in vitro or in vivo plants of Codiaeum variegatum cv. “Corazón de Oro.” Shoot multiplication occurred with N6-benzyladenine (BA) alone, where the simultaneous production of adventitious buds and somatic embryos occurred at the fourth subculture, and on leaves not in contact with the medium. A medium with BA and 2,4 dichlorophenoxy acetic acid (2,4-D) produced the largest organogenic response, for both in vivo- and in vitro-produced explants. Somatic embryogenesis was only induced when such explants were transferred to a medium lacking 2,4-D. Thus, a medium with BA only produced the largest percentage of explants with shoots and embryos. Replacing BA with thidiazuron induced up to 100% bud regeneration on in vitro-produced explants by 60 d, but was slower for in vitro-grown explants. Both types of embryos exhibited growth arrest that was partially overcome by transfer to hormone-free basal medium with activated charcoal. Rooted plants from all explants were successfully obtained on a medium with indole-butyric acid (IBA).  相似文献   

19.
We developed a new protocol for highly efficient somatic embryogenesis and plantlet conversion of Schisandra chinensis. Friable embryogenic callus was induced from cotyledonary leaves and hypocotyls of germinated zygotic embryos on Murashige and Skoog (MS) agar medium containing 2,4-dichlorophenoxyacetic acid (2,4-D). Preculture of zygotic embryos on 2,4-D-containing medium increased embryogenic callus induction efficiency. The highest embryogenic callus induction frequency of 56.7% was obtained from shoot apical meristem-containing hypocotyl explants from 1-week-old germinated embryos on MS medium containing 4.0 mg l−1 2,4-D. Embryogenic callus proliferation, somatic embryo (SE) formation, and subsequent plantlet conversion occurred under optimal culture conditions. The effects of MS medium strength, sucrose, gibberellic acid (GA3), and 6-benzyladenine (BA) on SE formation and plantlet conversion were evaluated. Low MS medium strength (1/4 to 1/2) was necessary for SE formation, and the optimal sucrose concentration was 2.0%. Supplementing medium with GA3 negatively impacted SE formation and subsequent development. BA significantly increased the number of SEs and the plantlet conversion capacity. One-third-strength MS medium with 1.0% sucrose and 0.5 mg l−1 BA produced the highest number of SEs (309 embryos from 9 mg embryogenic callus) and the highest frequency of plantlet conversion from germinated SEs (52.6%). When transplanted to soil, 90% of the regenerated plants developed into normal plants.  相似文献   

20.
A protocol for plant regeneration via somatic embryogenesis was developed in two chickpea (Cicer arietinum L.) cultivars ICCV-10 and Annigeri. Somatic embryos were induced from immature cotyledons on Murashige and Skoog’s (MS) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), α-naphthaleneacetic acid (NAA) and picloram alone or in combination with 0.5 — 2.0 mg dm−3 N6-benzylaminopurine (BA) or kinetin (KIN). NAA was better for somatic embryo induction compared to other auxins. The well formed, cotyledonary shaped embryos germinated into plantlets with 36.6 % frequency on MS medium supplemented with 2.0 mg dm−3 BA + 0.5 mg dm−3 abscisic acid (ABA). The frequency of embryogenesis and plantlet regeneration was higher in cv. ICCV-10 as compared to cv. Annigeri. Regenerated plants were transferred to soil (40 % survival) and grown to maturity. Histological studies of explants at various developmental stages of somatic embryogenesis reveled that somatic embryos developed directly from the cotyledon cells and they were single cell origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号