首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular hydrogen (H(2)) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H(2)-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH](out)) and the presence of formate. FHL is related with the F(0)F(1)-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H(2)-oxidizing enzymes during glucose fermentation at neutral and low [pH](out). They operate in a reverse, H(2)-producing mode during glycerol fermentation at neutral [pH](out). Hyd-1 and Hyd-2 activity depends on F(0)F(1). Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H(2) production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H(2) production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H(2) production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.  相似文献   

2.
Molecular hydrogen (H2) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H2-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH]out) and the presence of formate. FHL is related with the F0F1-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H2-oxidizing enzymes during glucose fermentation at neutral and low [pH]out. They operate in a reverse, H2-producing mode during glycerol fermentation at neutral [pH]out. Hyd-1 and Hyd-2 activity depends on F0F1. Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H2 production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.  相似文献   

3.
Given its availability, low prices, and high degree of reduction, glycerol has become an ideal feedstock for producing reduced compounds via anaerobic fermentation. We recently identified environmental conditions enabling the fermentative metabolism of glycerol in E. coli, along with the pathways and mechanisms mediating this metabolic process. In this work, we used the knowledge base created in previous studies to engineer E. coli for the efficient conversion of crude glycerol to ethanol. Our strategy capitalized on the high degree of reduction of carbon in glycerol, thus enabling the production of not only ethanol but also co-products hydrogen and formate. Two strains were created for the co-production of ethanol-hydrogen and ethanol-formate: SY03 and SY04, respectively. High ethanol yields were achieved in both strains by minimizing the synthesis of by-products succinate and acetate through mutations that inactivated fumarate reductase (DeltafrdA) and phosphate acetyltransferase (Deltapta), respectively. Strain SY04, which produced ethanol-formate, also contained a mutation that inactivated formate-hydrogen lyase (DeltafdhF), thus preventing the conversion of formate to CO(2) and H(2). High rates of glycerol utilization and product synthesis were achieved by simultaneous overexpression of glycerol dehydrogenase (gldA) and dihydroxyacetone kinase (dhaKLM), which are the enzymes responsible for the conversion of glycerol to glycolytic intermediate dihydroxyacetone phosphate. The resulting strains, SY03 (pZSKLMgldA) and SY04 (pZSKLMgldA), produced ethanol-hydrogen and ethanol-formate from unrefined glycerol at yields exceeding 95% of the theoretical maximum and specific rates in the order of 15-30 mmol/gcell/h. These yields and productivities are superior to those reported for the conversion of glycerol to ethanol-H(2) or ethanol-formate by other organisms and equivalent to those achieved in the production of ethanol from sugars using E. coli.  相似文献   

4.
Pectobacterium atrosepticum SCRI1043 is a phytopathogenic Gram‐negative enterobacterium. Genomic analysis has identified that genes required for both respiration and fermentation are expressed under anaerobic conditions. One set of anaerobically expressed genes is predicted to encode an important but poorly understood membrane‐bound enzyme termed formate hydrogenlyase‐2 (FHL‐2), which has fascinating evolutionary links to the mitochondrial NADH dehydrogenase (Complex I). In this work, molecular genetic and biochemical approaches were taken to establish that FHL‐2 is fully functional in P. atrosepticum and is the major source of molecular hydrogen gas generated by this bacterium. The FHL‐2 complex was shown to comprise a rare example of an active [NiFe]‐hydrogenase‐4 (Hyd‐4) isoenzyme, itself linked to an unusual selenium‐free formate dehydrogenase in the final complex. In addition, further genetic dissection of the genes encoding the predicted membrane arm of FHL‐2 established surprisingly that the majority of genes encoding this domain are not required for physiological hydrogen production activity. Overall, this study presents P. atrosepticum as a new model bacterial system for understanding anaerobic formate and hydrogen metabolism in general, and FHL‐2 function and structure in particular.  相似文献   

5.
The catabolism of sodium formate to acetate and carbon dioxide by the anaerobic acetogen Butyribacterium methylotrophicum was analyzed by fermentation time course and 13C nuclear magnetic resonance studies. Significant hydrogen production and consumption fluxes were observed during formate catabolism but not during the catabolism of formate plus CO. In the latter case, formate and CO were simultaneously consumed and label distribution studies with mixtures of 13C-labeled CO and formate demonstrated their preferential incorporation into the acetate carboxyl and methyl groups, respectively. Hydrogen consumption was inhibited by CO when both were present, whereas hydrogen and formate were simultaneously consumed when CO2 was supplied. Carbon dioxide was required for the conversion of CO to acetate, but a similar need was not observed when methanol plus CO or formate plus CO was present. These analyses indicate a bifurcated single-carbon catabolic pathway in which CO2 is the sole single-carbon compound that directly supplies the carbonyl and methyl group synthesis pathways leading to the formation of acetyl coenzyme A, the primary reduced product. We discuss causes for the reported inability of B. methylotrophicum to use formate as a sole substrate.  相似文献   

6.
7.
Catabolic products from anaerobic fermentation processes are potentially of industrial interest. The volatile fatty acids and alcohols produced can be used as building blocks in chemical processes or applied directly as substrates in a mixed culture process to produce bioplastics. Development of such applications requires a predictable and controllable product spectrum of the fermentation process. The aim of the research described in this paper was (i) to investigate the product spectrum of an open mixed culture fermentation (MCF) process as a function of the pH, using glucose as substrate, and (ii) to relate the product spectrum obtained to generalized biochemical and thermodynamic considerations. A chemostat was operated under carbon and energy limitation in order to investigate the pH effect on the product spectrum in a MCF process. A transition from CO(2)/H(2) production at lower pH values to formate production at higher pH values was observed. The ratio of CO(2)/H(2) versus formate production was found to be related to the thermodynamics of formate dehydrogenation to CO(2)/H(2). This transition was associated with a shift in the catabolic products, from butyrate and acetate to ethanol and acetate, likely due to a decrease in the oxidation state of the electron carriers in the cell. The product spectrum of the MCF process as a function of the pH could largely be explained using general biochemical considerations.  相似文献   

8.
The mat-building cyanobacterium Microcoleus chthonoplastes carried out a mixed-acid fermentation when incubated under anoxic conditions in the dark. Endogenous storage carbohydrate was fermented to acetate, ethanol, formate, lactate, H(inf2), and CO(inf2). Cells with a low glycogen content (about 0.3 (mu)mol of glucose per mg of protein) produced acetate and ethanol in equimolar amounts. In addition to glycogen, part of the osmoprotectant, glucosyl-glycerol, was degraded. The glucose component of glucosyl-glycerol was fermented, whereas glycerol was released into the medium. Cells with a high content of glycogen (about 2 (mu)mol of glucose per mg of protein) did not utilize glucosyl-glycerol. These cells produced more acetate than ethanol. M. chthonoplastes was also capable of using elemental sulfur as the electron acceptor during fermentation, resulting in the production of sulfide. With sulfur present, acetate production increased whereas ethanol production decreased. Also, less formate was produced and the evolution of hydrogen ceased completely. In general, the carbon recoveries were satisfactory but the oxidation-reduction balances were too high. The latter could be explained by assuming the reduction of ferric iron, which is associated with the cells, mediated by the oxidation of formate. The switch from photoautotrophic to fermentative metabolism did not require de novo protein synthesis, and fermentation started immediately upon transfer to dark anoxic conditions. From the molar ratios of the fermentation products and from measurement of enzyme activities in cell extracts, we concluded that glucose derived from glycogen and glucosyl-glycerol is degraded via the Embden-Meyerhof-Parnas pathway.  相似文献   

9.
Rhodospirillum rubrum is able to produce H2 during fermentation anaerobically in the dark in two ways, namely through formate hydrogen lyase and through the nitrogenase. After chemotrophic preculture aerobically in the dark formate hydrogen lyase was synthesized after a lag phase, whilst after phototrophic preculture a slight activity was present from the beginning of the anaerobic dark culture. During fermentation metabolism its activity increased noticeably. Hydrogen production through the nitrogenase occurred if the nitrogenase had been activated during phototrophic preculture. It ceased during fermentation metabolism after about 3 1/2 h anaerobic dark culture. The CO insensitive H2 production by the nitrogenase could be partially inhibited by N2. Potential activity of this system, however, remained and could be increased under conditions of nitrogenase induction. It seems therefore possible that synthesis of nitrogenase under N-deficiency can occur during fermentation metabolism in the same way as the formation of the photosynthetic apparatus in order to prepare for subsequent phototrophic metabolism.Abbreviations CAP chloramphenicol - DSM Deutsche Sammlung von Mikroorganismen, Göttingen - FHL formate hydrogen lyase - O.D optical density - PFL pyruvate formate lyase  相似文献   

10.
Anaerobic fermentation of glycerol in the Enterobacteriaceae family has long been considered a unique property of species that synthesize 1,3-propanediol (1,3-PDO). However, we have discovered that Escherichia coli can ferment glycerol in a 1,3-PDO-independent manner. We identified 1,2-propanediol (1,2-PDO) as a fermentation product and established the pathway that mediates its synthesis as well as its role in the metabolism of glycerol. We also showed that the trunk pathway responsible for the conversion of glycerol into glycolytic intermediates is composed of two enzymes: a type II glycerol dehydrogenase (glyDH-II) and a dihydroxyacetone kinase (DHAK), the former of previously unknown physiological role. Based on our findings, we propose a new model for glycerol fermentation in enteric bacteria in which: (i) the production of 1,2-PDO provides a means to consume reducing equivalents generated in the synthesis of cell mass, thus facilitating redox balance, and (ii) the conversion of glycerol to ethanol, through a redox-balanced pathway, fulfills energy requirements by generating ATP via substrate-level phosphorylation. The activity of the formate hydrogen-lyase and F(0)F(1)-ATPase systems were also found to facilitate the fermentative metabolism of glycerol, and along with the ethanol and 1,2-PDO pathways, were considered auxiliary or enabling. We demonstrated that glycerol fermentation in E. coli was not previously observed due to the use of medium formulations and culture conditions that impair the aforementioned pathways. These include high concentrations of potassium and phosphate, low concentrations of glycerol, alkaline pH, and closed cultivation systems that promote the accumulation of hydrogen gas.  相似文献   

11.
Klebsiella aerogenes NCTC 418 was grown anaerobically in chemostat culture with glycerol as source of carbon and energy. Glycerol-limited cultures did not ferment the carbon source with maximal efficiency but produced considerable amounts of 1,3-propanediol. The fraction of glycerol converted to this product depended on the growth rate and on the limitation: faster growing cells produced relatively more of this compound. Under glycerol excess conditions the energetic efficiency of fermentation was decreased due to the high 1,3-propanediol excretion rate. Evidence is presented that 1,3-propanediol accumulation exerts a profound effect on the cells' metabolic behaviour.When steady state glycerol-limited cultures were instantaneously relieved of the growth limitation a vastly enhanced glycerol uptake rate was observed, accompanied by a shift in the fermentation pattern towards 1,3-propanediol and acetate. This observation was consistent with the extremely high glycerol dehydrogenase activity that was measured in vitro. Some mechanisms that could be responsible for the energy dissipation during this response are discussed.  相似文献   

12.
Sulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, use the reduction of sulfate as a sink for electrons liberated in oxidation reactions of organic substrates. The rate of the latter exceeds that of sulfate reduction at the onset of growth, causing a temporary accumulation of hydrogen and other fermentation products (the hydrogen or fermentation burst). In addition to hydrogen, D. vulgaris was found to produce significant amounts of carbon monoxide during the fermentation burst. With excess sulfate, the hyd mutant (lacking periplasmic Fe-only hydrogenase) and hmc mutant (lacking the membrane-bound, electron-transporting Hmc complex) strains produced increased amounts of hydrogen from lactate and formate compared to wild-type D. vulgaris during the fermentation burst. Both hydrogen and CO were produced from pyruvate, with the hyd mutant producing the largest transient amounts of CO. When grown with lactate and excess sulfate, the hyd mutant also exhibited a temporary pause in sulfate reduction at the start of stationary phase, resulting in production of 600 ppm of headspace hydrogen and 6,000 ppm of CO, which disappeared when sulfate reduction resumed. Cultures with an excess of the organic electron donor showed production of large amounts of hydrogen, but no CO, from lactate. Pyruvate fermentation was diverse, with the hmc mutant producing 75,000 ppm of hydrogen, the hyd mutant producing 4,000 ppm of CO, and the wild-type strain producing no significant amount of either as a fermentation end product. The wild type was most active in transient production of an organic acid intermediate, tentatively identified as fumarate, indicating increased formation of organic fermentation end products in the wild-type strain. These results suggest that alternative routes for pyruvate fermentation resulting in production of hydrogen or CO exist in D. vulgaris. The CO produced can be reoxidized through a CO dehydrogenase, the presence of which is indicated in the genome sequence.  相似文献   

13.
Two halanaerobic bacteria--Halanaerobium saccharolytica subsp. senegalense and Halanaerobium sp. strain FR1H--produced acetate, H2, and CO2 from glycerol fermentation, but the glycerol consumption rate was low. In contrast, in the presence of the moderately halophilic hydrogenotrophic sulfate-reducing bacterium, Desulfohalobium retbaense, used as H2 scavenger in the coculture, glycerol oxidation by both halanaerobes significantly increased. Cocultures of both halanaerobes with D. retbaense on glycerol led to acetate, hydrogen sulfide, and CO2 production, whereas glycerol fermentation by the two strains led to the production of acetate, hydrogen, and CO2. The increased glycerol oxidation by H. saccharolytica and strain FRI H in coculture with D. retbaense resulted from low H2 partial pressure caused by the hydrogen-oxidizing activity of D. retbaense. These results provide the first evidence of interspecies hydrogen transfer in saline environments and indicate that this mechanism may play an important role in organic matter mineralization in hypersaline ecosystems.  相似文献   

14.
Pyruvate Metabolism in Sarcina maxima   总被引:6,自引:4,他引:2       下载免费PDF全文
The mechanisms of pyruvate cleavage and hydrogen production by Sarcina maxima were studied. It was found that a phosphoroclastic system for pyruvate oxidation, similar to that occurring in saccharolytic clostridia, is present in S. maxima. Cleavage of pyruvate by extracts of the latter organism resulted in the formation of acetyl phosphate, CO(2), and electrons which were transferred to ferredoxin. Formate was not an intermediate in this system. Pyruvate oxidation was coupled with ferredoxin-dependent nicotinamide adenine dinucleotide phosphate (NADP) reduction. A hydrogenase, active in particulate extracts of S. maxima, did not accept electrons from reduced ferredoxin. Formate was detected as a fermentation product when S. maxima was grown in media buffered with CaCO(3). Whole cells and extracts degraded formate to H(2) and CO(2). The evidence suggests that electrons generated by ferredoxin-linked pyruvate oxidation by S. maxima are not used for H(2) production, but that they serve for the reduction of NADP. Reduced NADP may be utilized by the organisms for synthesis of cell material. Production of H(2) by S. maxima may occur through a pyruvate clastic system similar to that present in coliform bacteria.  相似文献   

15.
Extracts of aerobically, CO-autotrophically grown cells of Pseudomonas carboxydovorans were shown to catalyze the oxidation of CO to CO(2) in the presence of methylene blue, pyocyanine, thionine, phenazine methosulfate, or toluylene blue under strictly anaerobic conditions. Viologen dyes and NAD(P)(+) were ineffective as electron acceptors. The same extracts catalyzed the oxidation of formate and of hydrogen gas; the spectrum of electron acceptors was identical for the three substrates, CO, formate, and H(2). The CO- and the formate-oxidizing activities were found to be soluble enzymes, whereas hydrogenase was membrane bound exclusively. The rates of oxidation of CO, formate, and H(2) were measured spectrophotometrically following the reduction of methylene blue. The rate of carbon monoxide oxidation followed simple Michaelis-Menten kinetics; the apparent K(m) for CO was 45 muM. The reaction rate was maximal at pH 7.0, and the temperature dependence followed the Arrhenius equation with an activation energy (DeltaH(0)) of 35.9 kJ/mol (8.6 kcal/mol). Neither free formate nor hydrogen gas is an intermediate of the CO oxidation reaction. This conclusion is based on the differential sensitivity of the activities of formate dehydrogenase, hydrogenase, and CO dehydrogenase to heat, hypophosphite, chlorate, cyanide, azide, and fluoride as well as on the failure to trap free formate or hydrogen gas in coupled optical assays. These results support the following equation for CO oxidation in P. carboxydovorans: CO + H(2)O --> CO(2) + 2 H(+) + 2e(-) The CO-oxidizing activity of P. carboxydovorans differed from that of Clostridium pasteurianum by not reducing viologen dyes and by a pH optimum curve that did not show an inflection point.  相似文献   

16.
The anaerobic fungus Neocallimastix sp. strain L2, isolated from the feces of a llama, was tested for growth on a range of soluble and insoluble carbohydrate substrates. The fungus was able to ferment glucose, cellobiose, fructose, lactose, maltose, sucrose, soluble starch, inulin, filter paper cellulose, and Avicel. No growth was observed on arabinose, galactose, mannose, ribose, xylose, sorbitol, pectin, xylan, glycerol, citrate, soya, and wheat bran. The fermentation products after growth were hydrogen, formate, acetate, ethanol, and lactate. The fermentation pattern was dependent on the carbon source. In general, higher hydrogen production resulted in decreased formation of lactate and ethanol. Recovery of the fermented carbon in products at the end of growth ranged from 50% to 80%. (Hemi)cellulolytic enzyme activities were affected by the carbon source. Highest activities were found in filtrates from cultures grown on cellulose. Growing the fungus on inulin and lactose yielded the lowest cellulolytic activities. Highest specific activities for avicelase, endoglucanase, β-glucosidase, and xylanase were obtained with Avicel as the substrate for growth (0.29, 5.9, 0.57, and 13 IU · mg−1 protein, respectively). Endoglucanase activity banding patterns after SDS-PAGE were very similar for all substrates. Minor differences indicated that enzyme activities may in part be the result of secretion of different sets of isoenzymes. Received: 10 July 1996 / Accepted: 22 July 1996  相似文献   

17.
18.
Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as glucose, are used. When cells were grown in a bioreactor using glucose the amount of polymer accumulated at low aeration was reduced by half when compared to high aeration, while glycerol cultures produced at low aeration almost twice the amount of polymer synthesized at the higher aeration condition. The synthesis of other metabolic products, such as ethanol, lactate, formate and acetate, were also affected by both the carbon source used and aeration conditions. In glucose cultures, lactate and formate production increased in low agitation compared to high agitation, while poly(3-hydroxybutyrate) synthesis decreased. In glycerol cultures, the amount of acids produced also increased when agitation was lowered, but carbon flow was mostly redirected towards ethanol and poly(3-hydroxybutyrate). These results indicated that carbon partitioning differed depending on both carbon source and oxygen availability, and that aeration conditions had different effects on the synthesis of the polymer and other metabolic products when glucose or glycerol were used.  相似文献   

19.
Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H(2) production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H(2) production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.  相似文献   

20.
A coccal bacterium (strain ES5) was isolated from methanogenic bioreactor sludge with glycerol as the sole energy and carbon source. Strain ES5 fermented glycerol to 1,3‐propanediol as main product, and lactate, acetate and formate as minor products. The strain was phylogenetically closely related to Trichococcus flocculiformis; the rRNA gene sequence similarity was 99%. However, strain ES5 does not show the typical growth in chains of T. flocculiformis. Moreover, T. flocculiformis does not ferment glycerol. Strain ES5 used a variety of sugars for growth. With these substrates, lactate, acetate and formate were the main products, while 1,3‐propanediol was not formed. The optimum growth temperature of strain ES5 ranges from 30–37°C, but like several other Trichoccoccus strains, strain ES5 is able to grow at low temperature (< 10°C). Therefore, strain ES5 may be an appropriate catalyst for the biotechnological production of 1,3‐propanediol from glycerol at low ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号