首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wild-type Corynebacterium glutamicum produced 0.6 g l−1 xylitol from xylose at a productivity of 0.01 g l−1 h−1 under oxygen deprivation. To increase this productivity, the pentose transporter gene (araE) from C. glutamicum ATCC31831 was integrated into the C. glutamicum R chromosome. Consequent disruption of its lactate dehydrogenase gene (ldhA), and expression of single-site mutant xylose reductase from Candida tenuis (CtXR (K274R)) resulted in recombinant C. glutamicum strain CtXR4 that produced 26.5 g l−1 xylitol at 3.1 g l−1 h−1. To eliminate possible formation of toxic intracellular xylitol phosphate, genes encoding xylulokinase (XylB) and phosphoenolpyruvate-dependent fructose phosphotransferase (PTSfru) were disrupted to yield strain CtXR7. The productivity of strain CtXR7 increased 1.6-fold over that of strain CtXR4. A fed-batch 21-h CtXR7 culture in mineral salts medium under oxygen deprivation yielded 166 g l−1 xylitol at 7.9 g l−1 h−1, representing the highest bacterial xylitol productivity reported to date.  相似文献   

2.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   

3.
Butanol, a four-carbon primary alcohol (C4H10O), is an important industrial chemical and has a good potential to be used as a superior biofuel. Bio-based production of butanol from renewable feedstock is a promising and sustainable alternative to substitute petroleum-based fuels. Here, we report the development of a process for butanol production from glycerol, which is abundantly available as a byproduct of biodiesel production. First, a hyper butanol producing strain of Clostridium pasteurianum was isolated by chemical mutagenesis. The best mutant strain, C. pasteurianum MBEL_GLY2, was able to produce 10.8 g l−1 butanol from 80 g l−1 glycerol as compared to 7.6 g l−1 butanol produced by the parent strain. Next, the process parameters were optimized to maximize butanol production from glycerol. Under the optimized batch condition, the butanol concentration, yield, and productivity of 17.8 g l−1, 0.30 g g−1, and 0.43 g l−1 h−1 could be achieved. Finally, continuous fermentation of C. pasteurianum MBEL_GLY2 with cell recycling was carried out using glycerol as a major carbon source at several different dilution rates. The continuous fermentation was run for 710 h without strain degeneration. The acetone–butanol–ethanol productivity and the butanol productivity of 8.3 and 7.8 g l−1 h−1, respectively, could be achieved at the dilution rate of 0.9 h−1. This study reports continuous production of butanol with reduced byproducts formation from glycerol using C. pasteurianum, and thus could help design a bioprocess for the improved production of butanol.  相似文献   

4.
Mucor indicus can be used to produce ethanol from a variety of sugars, including pentose’s. An extract of it, produced by autolysis, could replace yeast extract in culture medium with improved production of ethanol. At 10 g l−1, the extract gave a higher ethanol yield (0.47 g g−1) and productivity (0.71 g l−1 h−1) compared to medium containing yeast extract (yield 0.45 g g−1; productivity 0.67 g l−1 h−1).  相似文献   

5.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

6.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

7.
Clostridium beijerinckii mutant strain IB4, which has a high level of inhibitor tolerance, was screened by low-energy ion implantation and used for butanol fermentation from a non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). Evaluation of toxicity showed C. beijerinckii IB4 had a higher level of tolerance than parent strain C. beijerinckii NCIMB 8052 for five out of six phenolic compounds tested (the exception was vanillin). Using glucose as carbon source, C. beijerinckii IB4 produced 9.1 g l−1 of butanol with an acetone/butanol/ethanol (ABE) yield of 0.41 g g−1. When non-detoxified SAHHC was used as carbon source, C. beijerinckii NCIMB 8052 grew well but ABE production was inhibited. By contrast, C. beijerinckii IB4 produced 9.5 g l−1 of ABE with a yield of 0.34 g g−1, including 2.2 g l−1 acetone, 6.8 g l−1 butanol, and 0.5 g l−1 ethanol. The remarkable fermentation and inhibitor tolerance of C. beijerinckii IB4 appears promising for ABE production from lignocellulosic materials.  相似文献   

8.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

9.
10.
The constant-rate fed-batch production of the polygalacturonic acid bioflocculant REA-11 was studied. A controlled sucrose-feeding strategy resulted in a slight improvement in biomass and a 7% reduction in flocculating activity compared with the batch process. When fed with a 3 g l−1 urea solution, the flocculating activity was enhanced to 720 U ml−1 in 36 h. High cell density (2.12 g l−1) and flocculating activity (820 U ml−1) were obtained in a 10-l fermentor by feeding with a sucrose-urea solution, with values of nearly two times and 50% higher than those of the batch process, respectively. Moreover, the residual sucrose declined to 2.4 g l−1, and residual urea decreased to 0.03 g l−1. Even higher flocculating activity of 920 U ml−1 and biomass of 3.26 g l−1 were obtained by feeding with a sucrose-urea solution in a pilot scale fermentation process, indicating the potential industrial utility of this constant-rate feeding strategy in bioflocculant production by Corynebacterium glutamicum.  相似文献   

11.
Guggulsterone, a hypolipidemic natural agent, is produced in resin canals of the plant Commiphora wightii. In this study, the stimulatory effects of growth retardants [ALAR (N,N-dimethylaminosuccinamic acid) and CCC (chlormequat chloride)] and fungal elicitor on guggulsterone accumulation in cell cultures of C. wightii are reported. CCC at 1 mg l−1 enhanced guggulsterone content (~123 μg l−1) when added on the fifth day after inoculation, while ALAR at 2.5 mg l−1 increased guggulsterone content (~116 μg l−1) when added on the tenth day. In a two-stage fed-batch process, combined treatment with fungal elicitor and growth retardant caused a significant increase (~353 μg l−1) in guggulsterone content in cell cultures after 17 days of growth. This represents an approximately fivefold increase over the guggulsterone contents in initial cultures of this plant.  相似文献   

12.
Using ectoine-excreting strain Halomonas salina DSM 5928T, we developed a new process for high-efficiency production of ectoine, which involved a combined process of batch fermentation by growing cells and production by resting cells. In the first stage, batch fermentation was carried out using growing cells under optimal fermentation conditions. The second stage was the production phase, in which ectoine was synthesized and excreted by phosphate-limited resting cells. Optimal conditions for synthesis and excretion of ectoine during batch fermentation in a 10 l fermentor were 0.5 mol l−1 NaCl and an initial monosodium glutamate concentration of 80 g l−1 respectively. The pH was adjusted to 7.0 and the temperature was maintained at 33°C. In phosphate-limited resting cells medium, monosodium glutamate and NaCl concentration was 200 g l−1 and 0.5 mol l−1, respectively, as well as pH was 7.0. The total concentration of ectoine produced was 14.86 g l−1, the productivity and yield of ectoine was 7.75 g l−1 day−1 and 0.14 g g−1, respectively, and the percentage of ectoine excreted was 79%. These levels of ectoine production and excretion are the highest reported to date.  相似文献   

13.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

14.
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l−1) was achieved using soybean oil at 40 g l−1 and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l−1 h−1, and the calculated Yp/s value was 0.85 g g−1. Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.  相似文献   

15.
Withanolides are biologically active secondary metabolites present in roots and leaves of Withania somnifera. In the present study, we have induced adventitious roots from leaf explants of W. somnifera for the production of withanolide-A, which is having pharmacological activities. Adventitious roots were induced directly from leaf segments of W. somnifera on half strength Murashige and Skoog (MS) semisolid medium (0.8% agar) with 0.5 mg l−1 indole-3-butyric acid (IBA) and 30 g l−1 sucrose. Adventitious roots cultured in flasks using half strength MS liquid medium with 0.5 mg l−1 IBA and 30 g l−1 showed higher accumulation of biomass (108.48 g l−1FW and 10.76 g l−1 DW) and withanolide-A content (8.8 ± 0.20 mg g−1 DW) within five weeks. Nearly 11-fold increment of fresh biomass was evident in suspension cultures and adventitious root biomass produced in suspension cultures possessed 21-fold higher withanolide-A content when compared with the leaves of natural plants. An inoculum size of 10 g l−1 FW favoured the biomass accumulation and withanolide-A production in the tested range of 2.5, 5.0, 10.0 and 20.0 g l−1 FW. Among different media tested [Murashige and Skoog (MS), Gamborg’s (B5), Nitsch and Nitsch (NN) and Chu’s (N6)], MS medium favoured both biomass accumulation and withanolide-A production. Half strength MS medium favoured the biomass accumulation and withanolide-A production among the different strength MS medium tested (0.25, 0.5, 0.75, 1.0, 1.5 and 2.0). The current results showed great potentiality of adventitious roots cultures for the production of withanolide-A.  相似文献   

16.
In the fed-batch culture of glycerol using a metabolically engineered strain of Escherichia coli, supplementation with glucose as an auxiliary carbon source increased lycopene production due to a significant increase in cell mass, despite a reduction in specific lycopene content. l-Arabinose supplementation increased lycopene production due to increases in cell mass and specific lycopene content. Supplementation with both glucose and l-arabinose increased lycopene production significantly due to the synergistic effect of the two sugars. Cell growth by the consumption of carbon sources was related to endogenous metabolism in the host E. coli. Supplementation with l-arabinose stimulated only the mevalonate pathway for lycopene biosynthesis and supplementation with both glucose and l-arabinose stimulated synergistically only the mevalonate pathway. In the fed-batch culture of glycerol with 10 g l−1 glucose and 7.5 g l−1 l-arabinose, the cell mass, lycopene concentration, specific lycopene content, and lycopene productivity after 34 h were 42 g l−1, 1,350 mg l−1, 32 mg g cells−1, and 40 mg l−1 h−1, respectively. These values were 3.9-, 7.1-, 1.9-, and 11.7-fold higher than those without the auxiliary carbon sources, respectively. This is the highest reported concentration and productivity of lycopene.  相似文献   

17.
In this work, the production of 1,3-propanediol from glucose and molasses was studied in a two-step process using two recombinant microorganisms. The first step of the process is the conversion of glucose or other sugar into glycerol by the metabolic engineered Saccharomyces cerevisiae strain HC42 adapted to high (>200 g l−1) glucose concentrations. The second step, carried out in the same bioreactor, was performed by the engineered strain Clostridium acetobutylicum DG1 (pSPD5) that converts glycerol to 1,3-propanediol. This two-step strategy led to a flexible process, resulting in a 1,3-propanediol production and yield that depended on the initial sugar concentration. Below 56.2 g l−1 of sugar concentration, cultivation on molasses or glucose showed no significant differences. However, at higher molasses concentrations, glycerol initially produced by yeast could not be totally converted into 1,3-propanediol by C. acetobutylicum and a lower 1,3-propanediol overall yield was observed. In our hand, the best results were obtained with an initial glucose concentration of 103 g l−1, leading to a final 1,3-propanediol concentration of 25.5 g l−1, a productivity of 0.16 g l−1 h−1 and 1,3-propanediol yields of 0.56 g g−1 glycerol and 0.24 g g−1 sugar, which is the highest value reported for a two-step process. For an initial sugar concentration (from molasses) of 56.2 g l−1, 27.4 g l−1 of glycerol were produced, leading to 14.6 g l−1 of 1.3-propanediol and similar values of productivity, 0.15 g l−1 h−1, and overall yield, 0.26 g g−1 sugar.  相似文献   

18.
Alginates are polysaccharides that are used as thickening agents, stabilizers, and emulsifiers in various industries. These biopolymers are produced by fermentation with a limited understanding of the processes occurring at the cellular level. The objective of this study was to evaluate the effects of agitation rate and inlet sucrose concentrations (ISC) on alginate production and the expression of the genes encoding for alginate-lyases (algL) and the catalytic subunit of the alginate polymerase complex (alg8) in chemostat cultures of Azotobacter vinelandii ATCC 9046. Increased alginate production (2.4 g l−1) and a higher specific alginate production rate (0.1 g g−1 h−1) were obtained at an ISC of 15 g l−1. Carbon recovery of about 100% was obtained at an ISC of 10 g l−1, whereas it was close to 50% at higher ISCs, suggesting that cells growing at lower sucrose feed rates utilize the carbon source more efficiently. In each of the steady states evaluated, an increase in algL gene expression was not related to a decrease in alginate molecular weight, whereas an increase in the molecular weight of alginate was linked to higher alg8 gene expression, demonstrating a relationship between the alg8 gene and alginate polymerization in A. vinelandii for the first time. The results obtained provide a possible explanation for changes observed in the molecular weight of alginate synthesized and this knowledge can be used to build a recombinant strain able to overexpress alg8 in order to produce alginates with higher molecular weights.  相似文献   

19.
A membrane bioreactor for production of nisin Z was constructed using Lactococcus lactis IO-1 in continuous culture using hydrolyzed sago starch as carbon source. A strategy used to enhance the productivity of nisin Z was to maintain the cells in a continuous growth at high cell concentration. This resulted in a volumetric productivity of nisin Z, as 50,000 IU l−1 h−1 using a cell concentration of 15 g l−1, 30°C, pH 5.5 and a dilution rate of 1.24 h−1. Adding 10 g l−1 YE and 2 g l−1 polypeptone, other inducers were unnecessary to maintain production of nisin. The operating conditions of the reactor removed nisin and lactate, thus minimizing their effects which allowed the maintenance of cells in continuous exponential growth phase mode with high metabolic activity.  相似文献   

20.
Compared with steady state, oscillation in continuous very-high-gravity ethanol fermentation with Saccharomyces cerevisiae improved process productivity, which was thus introduced for the fermentation system composed of a tank fermentor followed by four-stage packed tubular bioreactors. When the very-high-gravity medium containing 280 g l−1 glucose was fed at the dilution rate of 0.04 h−1, the average ethanol of 15.8% (v/v) and residual glucose of 1.5 g l−1 were achieved under the oscillatory state, with an average ethanol productivity of 2.14 g h−1 l−1. By contrast, only 14.8% (v/v) ethanol was achieved under the steady state at the same dilution rate, and the residual glucose was as high as 17.1 g l−1, with an ethanol productivity of 2.00 g h−1 l−1, indicating a 7% improvement under the oscillatory state. When the fermentation system was operated under the steady state at the dilution rate of 0.027 h−1 to extend the average fermentation time to 88 h from 59 h, the ethanol concentration increased slightly to 15.4% (v/v) and residual glucose decreased to 7.3 g l−1, correspondingly, but the ethanol productivity was decreased drastically to 1.43 g h−1 l−1, indicating a 48% improvement under the oscillatory state at the dilution rate of 0.04 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号