首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that estrogens have the potential to induce new forms of renin substrate in addition to elevating the major circulating form of this protein. One of these estrogen-induced forms had a molecular weight in excess of 150,000. In this study we have compared the plasma concentration of the high-molecular-weight renin substrate in normotensive women receiving estrogen therapy and women with estrogenic hypertension. A statistically significant elevation of this protein was associated with estrogenic hypertension and normotensive pregnant women at term. This form of renin substrate differed from the major form with respect to electrophoretic mobility, isoelectric point, and immunologic cross-reactivity. In addition, kinetic analysis indicated that this high-molecular-weight substrate has a significantly higher affinity for the enzyme renin than the major circulating form (Km = 1800 +/- 290 versus 3520 +/- 260 ng angiotensin I equivalents/ml). These results suggest that in addition to renin substrate concentration, substrate composition may play an important role in blood pressure regulation.  相似文献   

2.
Sheep plasma renin substrate was purified 1,200-fold by using nephrectomised sheep plasma, followed by DEAE-Sephadex chromatography and gel filtration. The purified substrate contained 8 mu-g angiotensin II/mg protein and had an estimated molecular weight of 52,000. The kinetic characteristics of the purified substrate were identical both to those of unpurified nephrectomised sheep plasma and to normal sheep plasma substrates. At pH 7.5, K-m of the human renin-sheep substrate reaction was 0.29 mu-M and for sheep renin-sheep substrate, 2.0 mu-M. Sheep substrate was susceptible to peptic digestion with generation of pepsitensin. Human renin substrate was less readily purified. DEAE-Sephadex chromatography of plasma from pregnant women at 36-40 weeks' gestation produced a 70-fold increase in purity (0.9 mu-g angiotensin II/mg protein). No further increase was achieved with gel filtration. Human renin substrate behaved as a larger (mol. wt. 82,000) more anionic protein than sheep substrate and was resistant to the proteolytic actions of both pepsin and sheep renin. K-m for the human renin-human substrate reaction was high and could not be accurately determined (range 3-8 mu-M, mean 5.7 mu-M). The presence of human substrate in a human renin-sheep substrate system did not alter the measured initial velocity. In both sheep and man, the normal concentration of renin substrate is considerably less than K-m and must therefore be considered a determinant of angiotensin production rate in vivo.  相似文献   

3.
By using [32P]-labeled phosphoaminoacids it has been shown that, at mu molar range concentrations, Tyr-32P but neither Ser-32P nor Thr-32P can be significantly dephosphorylated by highly purified repressible acid phosphatase from Saccharomyces cerevisiae. The phosphopeptide Arg-Arg-Ala-Ser(32P)-Val-Ala however, reproducing the phosphorylation site of pyruvate kinase and previously phosphorylated by cAMP-dependent protein kinase, can be very readily dephosphorylated with favourable kinetic constants (Km 0.28 microM, Vmax = 62 units/micrograms) while its derivatives Ala-Ser(32P)-Val-Ala, Arg-Arg-Ala-Thr(32P)-Val-Ala, Arg-Arg-Pro-Ser(32P)-Pro-Ala as well as other peptides and protein substrates phosphorylated by either protein kinase-C or casein kinase-2 are either unaffected or very slowly dephosphorylated by the phosphatase. Conversely Tyr-32P containing angiotensin, poly (Glu, Tyr) 4:1 and the phosphopeptide Asp-Ala-Glu-Tyr(32P)-Ala-Ala-Arg-Arg-Arg-Gly are all dephosphorylated with kinetic constants comparable to those of free phosphotyrosine (Km 0.2-1 microM; Vmax = 4-10 units/micrograms). It is proposed that, while acid phosphatase exhibits a broad specificity toward phosphotyrosine and phosphotyrosyl polypeptides, it is highly selective toward phosphoseryl sites fulfilling definite structural requirements which are reminiscent of those determining phosphorylation by cAMP-dependent protein kinase.  相似文献   

4.
Kinetics of Neutral Amino Acid Transport Across the Blood-Brain Barrier   总被引:20,自引:8,他引:12  
Neutral amino acid (NAA) transport across the blood-brain barrier was examined in pentobarbital-anesthetized rats with an in situ brain perfusion technique. Fourteen of 16 plasma NAAs showed measurable affinity for the cerebrovascular NAA transport system. Values of the transport constants (Vmax, Km, KD) were determined for seven large NAAs from saturation studies, whereas Km values for five small NAAs were estimated from inhibition studies. These data, together with our previous work, provide a complete set of constants for prediction of NAA influx from plasma. Among the NAAs, Vmax varied at least fivefold and Km varied approximately 700 fold. The apparent affinity (1/Km) of each NAA was related linearly (r = 0.910) to the octanol/water partition coefficient, a measure of NAA side-chain hydrophobicity. Predicted influx values from transport constants and average plasma concentrations agree well with values measured using plasma perfusate. These results provide accurate new estimates of the kinetic constants that determine NAA transport across the blood-brain barrier. Furthermore, they suggest that affinity of a L-alpha-amino acid for the transport system is determined primarily by side-chain hydrophobicity.  相似文献   

5.
Unidirectional L-phenylalanine transport into six brain regions of pentobarbital-anesthetized rats was studied using the in situ brain perfusion technique. This technique allows both accurate measurements of cerebrovascular amino acid transport and complete control of perfusate amino acid composition. L-Phenylalanine influx into the brain was sodium independent and could be described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants in the parietal cortex equaled 6.9 X 10(-4) mumol/s/g for Vmax, 0.011 mumol/ml for Km, and 1.8 X 10(-4) ml/s/g for KD during perfusion with fluid that did not contain competing amino acids. D-Phenylalanine competitively inhibited L-phenylalanine transport with a Ki approximately 10-fold greater than the Km for L-phenylalanine. There were no significant regional differences in Km, KD, or Ki, whereas Vmax was significantly greater in the cortical lobes than in the other brain regions. L-Phenylalanine influx during plasma perfusion was only 30% of that predicted in the absence of competing amino acids. Competitive inhibition increased the apparent Km during plasma perfusion by approximately 20-fold, to 0.21 mumol/ml. These data provide accurate new estimates of the kinetic constants that describe L-phenylalanine transport across the blood-brain barrier. In addition, they indicate that the cerebrovascular transfer site affinity (1/Km) for L-phenylalanine is three- to 12-fold greater than previously estimated in either awake or anesthetized animals.  相似文献   

6.
Important kinetic aspects of renin reaction were studied in order to evaluate the parameters that regulate the formation rate of angiotensin I. This rate decreased throughout the incubation period of normal rat plasma and it showed a linear increase when plasma was incubated with renin-substrate. When renin was added to normal rat plasma a plateau in the angiotensin I formation rate occurred after 4-6 hours. When plasma samples containing increasing amounts of renin-substrate were incubated, the velocity of their reaction increased in proportion to the renin-substrate concentration. Under these incubation conditions, the reaction between endogenous renin and renin-substrate in normal rat plasma, proved to be a first kinetic order with respect to the substrate.  相似文献   

7.
Properties of renin substrate in rabbit plasma with a note on its assay   总被引:4,自引:3,他引:1  
1. Rabbit plasma enzymes that degrade angiotensin I are inhibited completely by the combination of 2,3-dimercaptopropan-1-ol (10mm), EDTA (10mm) and chlorhexidine gluconate (0.005%, w/v). These compounds do not modify the reaction of renin with renin substrate and are termed the selective inhibitors. 2. The renin substrate concentration of plasma can be measured as angiotensin I content by incubating plasma plus the selective inhibitors with renin for a time sufficient to allow complete utilization of renin substrate. 3. This reaction obeys first-order kinetics to substrate concentrations of at least 1000ng. of angiotensin I content/ml. In general, the renin substrate concentrations of normal rabbit plasmas are less than 1000ng. of angiotensin I content/ml. Thus the time required for the complete release of angiotensin I from normal plasma is inversely related to renin activity and is independent of renin substrate concentration. 4. A method for the assay of renin substrate, taking these reaction kinetics into account, is presented.  相似文献   

8.
Calmodulin-dependent protein phosphatase from bovine brain and heart was assayed for phosphotyrosine and phosphoserine phosphatase activity using several substrates: 1) smooth muscle myosin light chain (LC20) phosphorylated on tyrosine or serine residues, 2) angiotensin I phosphorylated on tyrosine, and 3) synthetic phosphotyrosine- or phosphoserine-containing peptides with amino acid sequences patterned after the autophosphorylation site in Type II regulatory subunit of the cAMP-dependent protein kinase. The phosphatase was activated by Ni2+ and Mn2+, and stimulated further by calmodulin. In the presence of Ni2+ and calmodulin, it exhibited similar kinetic constants for the dephosphorylation of phosphotyrosyl LC20 (Km = 0.9 microM, and Vmax = 350 nmol/min/mg) and phosphoseryl LC20 (Km = 2.6 microM, Vmax = 690 nmol/min/mg). Dephosphorylation of phosphotyrosyl LC20 was inhibited by phosphoseryl LC20 with an apparent Ki of 2 microM. Compared to the reactions with phosphotyrosyl LC20 as the substrate, reactions with phosphotyrosine-containing oligopeptides exhibited slightly higher Km and lower Vmax values. The reaction with the phosphoseryl peptide based on the Type II regulatory subunit sequence exhibited a slightly higher Km (23 microM), but a much higher Vmax (4400 nmol/min/mg) than that with its phosphotyrosine-containing counterpart. Micromolar concentrations of Zn2+ inhibited the phosphatase activity; vanadate was less potent, and 25 mM NaF was ineffective. The study provides quantitative data to serve as a basis for comparing the ability of the calmodulin-dependent protein phosphatase to act on phosphotyrosine- and phosphoserine-containing substrates.  相似文献   

9.
The effects of synthetic atrial natriuretic factor (ANF) on the renin-aldosterone axis were studied in fifteen 4-7 day-old male milk-fed calves divided into 3 groups of 5 animals each. Synthetic ANF intravenous (i.v.) administration (1.6 micrograms/kg body wt over 30 min) induced a transient significant fall in plasma renin activity (from 2.5 +/- 0.3 to 1.7 +/- 0.3 ng angiotensin l/ml/h; P less than 0.05) but failed to reduce basal plasma aldosterone levels in the first group of animals. Administration (i.v.) of angiotensin II (AII) (0.8 micrograms/kg body wt for 75 min) was accompanied by a progressive fall in plasma renin activity (from 2.2 +/- 0.3 to 0.8 +/- 0.1 ng angiotensin l/ml/h; P less than 0.01) and by an increase in plasma aldosterone levels (from 55 +/- 3 to 86 +/- 5 pg/ml; P less than 0.01) both in the second and the third groups; addition of ANF to AII infusion (AII: 0.5 mu/kg body wt for 45 min; AII: 0.3 micrograms/kg body wt and ANF 1.6 micrograms/kg body wt during 30 min) in the third group did not modify plasma renin activity or AII-stimulated plasma aldosterone levels when compared to the AII-treated group. These findings show that in the newborn calf ANF is able to reduce plasma renin activity but fails to affect basal and AII-stimulated plasma aldosterone levels, suggesting that the zona glomerulosa of the newborn adrenal cortex is insensitive to a diuretic, natriuretic and hypotensive dose of the atrial peptide.  相似文献   

10.
Methods for the measurement of renin and renin substrate by radioimmunoassay have been described. One method of measuring renin is based on the zero-order reaction velocity of angiotensin I formation when serum is incubated with an excess of hog substrate. This method was compared with a bioassay which has been described previously (A. B. Gould, L. T. Skeggs, and J. R. Kahn, 1966, Lab. Invest.15, 1802–1813) and with another radioimmunoassay which determines renin concentration from the rate of angiotensin I formation with endogenous substrate by using the integrated form of the Michaelis-Menten equation and the kinetic constants. Similar results were obtained by these three methods when 30 samples of serum from 15 normotensive people were assayed. No evidence was found to suggest any interference by activators or inhibitors in human serum. The mean recovery of human renin added to serum in 27 experiments was 93.5 ± 10.7% (SD). In addition, the kinetic analysis of human serum showed no difference in the rate of angiotensin formation, at comparable substrate levels, in sera from normotensive people (including women taking oral contraceptives) and patients with essential hypertension.  相似文献   

11.
The properties of two unusual substrates of calf spleen purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1), 7-methylguanosine and 7-methylinosine, are described. The corresponding bases, 7-methylguanine and 7-methylhypoxanthine, are neither substrates in the reverse, synthetic reaction, nor inhibitors of the phosphorolysis reaction. Both nucleosides exhibit fluorescence, which disappears on cleavage of the glycosidic bond, providing a new convenient procedure for continuous fluorimetric assay of enzymatic activity. For 7-methylguanosine at neutral pH and 25 degrees C, Vmax = 3.3 mumol/min per unit enzyme and Km = 14.7 microM, so that Vmax/Km = 22 X 10(-2)/min per unit as compared to 8 X 10(-2) for the commonly used substrate inosine. The permissible initial substrate concentration range is 5-100 microM. Enzyme activity may also be monitored spectrophotometrically. For 7-methylinosine, Vmax/Km is much lower, 2.4 X 10(-2), but its 10-fold higher fluorescence partially compensates for this, and permits the use of initial substrate concentrations in the range 1-500 microM. At neutral pH both substrates are mixtures of cationic and zwitterionic forms. Measurements of pH-dependence of kinetic constants indicated that the cationic forms are the preferred substrates, whereas the monoanion of inosine appears to be almost as good a substrate as the neutral form. With 7-methylguanosine as substrate, and monitoring of activity fluorimetrically and spectrophotometrically, inhibition constants were measured for several known inhibitors, and the results compared with those obtained with inosine as substrate, and with results reported for the enzyme from other sources.  相似文献   

12.
The kinetic properties of two different substrates for human renin, a synthetic tetradecapeptide and the natural substrate human angiotensinogen, have been compared. While the Vmax was similar for the two substrates, the Km values differed by a factor of 10, i.e., 11.7 +/- 0.7 microM (tetradecapeptide) and 1.0 +/- 0.1 microM (angiotensinogen). The mode of inhibition of renin by a statine (Sta)-containing hexapeptide, BW897C, that is a close structural analog of residues 8-13 of human angiotensinogen (Phe-His-Sta-Val-Ile-His-OMe), was determined for the two substrates. Competitive inhibition was observed when tetradecapeptide was the substrate (Ki = 2.0 +/- 0.2 microM), but a more complex mixed inhibition mode (Ki = 1.7 +/- 0.1 microM, Ki' = 3.0 +/- 0.23 microM) was found with angiotensinogen as substrate. This mixed inhibition probably results from the formation of an enzyme-inhibitor-substrate or enzyme-inhibitor-product complex and reflects the more extensive interactions that the protein angiotensinogen, as opposed to the small tetradecapeptide substrate, can make with renin. We conclude that the mixed inhibition observed when angiotensinogen is used as renin substrate could be important in the clinical application of renin inhibitors because it is less readily reversed by increased concentrations of substrate than is simple competitive inhibition.  相似文献   

13.
Alkyllysophospholipids (ALP) which are 1-O-alkyl analogs of the cell membrane component 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC) represent a family of new antitumor drugs. Susceptibility of cells to ALP is correlated to a selective inhibition of fatty acid incorporation into 1,2-diacyl-sn-glycero-3-phosphocholine in intact cells. This report examines oleoyl-CoA-1-acyl-GPC acyl-transferase activities in cell-free systems of ALP-sensitive methylcholanthrene-induced fibrosarcoma cells (MethA cells) and ALP-resistant bone marrow-derived murine macrophages (BMM phi). The specific activities for the oleoyl-CoA-1-acyl-GPC acyltransferases were 1.05 +/- 0.06 nmol X mg-1 X min-1 and 2.98 +/- 0.27 nmol X mg-1 X min-1, respectively. The kinetic parameters for 1-palmitoyl-GPC were Km = 16.6 microM, Vmax = 4.3 nmol X mg-1 X min-1 (BMM phi) and Km = 7.6 microM, Vmax = 2.0 nmol X mg-1 X min-1 (MethA cells). In the presence of 1-O-octadecyl-2-O-methyl racemic glycero-3-phosphocholine (ET-18-OCH3), one of the most potent cytotoxic ALP, the acyltransferase was dose dependently inhibited in MethA cells with a 50% inhibition concentration at 40 micrograms/ml. The BMM phi-acyltransferase was not affected up to 80 micrograms of ET-18-OCH3/ml. The kinetic parameters (Km' = 15.4 microM, Vmax' = 2.2 nmol X mg-1 X min-1) suggest that ET-18-OCH3 is a competitive inhibitor in MethA cells. Inhibitor constants for ET-18-OCH3, calculated from Dixon plots, were found to be 423 microM (BMM phi) and 13 microM (MethA cells) indicating a 33-fold larger affinity of ET-18-OCH3 to the MethA cells than to the BMM phi acyltransferase. From these data we assume that the inhibition of oleic acid incorporation into cellular phosphocholine during the antineoplastic action of ALP may be due to different affinities of the inhibitor to the 1-acyl-GPC acyltransferases in different cell types.  相似文献   

14.
We looked for the presence of prorenin in erythrocytes from normal subjects (n = 8), hypertensive patients (n = 8), and pregnant women (n = 8). Angiotensin I generation was measured at 37 degrees C, pH 5.7, in the presence of homologous substrate (1400 ng/mL) before and after trypsin activation (100 micrograms/mL) in (A) haemolyzed erythrocytes, (B) supernatants of haemolyzed erythrocytes, and (C) in the sixth washing of erythrocytes diluted 1:1 with a 0.1 M Tris buffer containing 0.5% bovine serum albumin and protease inhibitors. Haemolyzed erythrocytes generated angiotensin I only after trypsin treatment, and the rate of generation was the same (A) before and (B) after centrifugation at 20,000g, indicating the absence of prorenin bound to the cell membranes. When aliquots of the last washing of erythrocytes (C) were tested for angiotensin I generation before and after trypsin, they did not generate angiotensin I, indicating that residual prorenin from the plasma was no longer present in our preparation. Angiotensin I generation by trypsin-treated A and B was completely abolished by preincubation with anti-renin serum. The level of prorenin was not significantly different in the erythrocytes from normal, hypertensive, and pregnant subjects (68 +/- 10, 58 +/- 7 and 107 +/- 17 pg angiotensin I.mL-1.h-1, ns) in spite of their very different plasma levels (21 +/- 2.5, 17 +/- 2.4 and 110 +/- 12 ng angiotensin I.mL-1.h-1, p less than 0.01 for pregnant women compared with both normal and hypertensive subjects). Our data show that prorenin is present in human erythrocytes in fairly constant and clearly detectable amounts, thus suggesting a possible intracellular role for it.  相似文献   

15.
L-Asparaginase shows antileukemic activity and is generally administered in the body in combination with other anticancer drugs like pyrimidine derivatives. In the present study, L-asparaginase was purified from a bacteria Erwinia carotovora and the effect of a dihydropyrimidine derivative (1-amino-6-methyl-4-phenyl-2-thioxo, 1,2,3,4-tetrahydropyrimidine-5-carboxylic acid methyl ester) was studied on the kinetic parameters Km and Vmax of the enzyme using L-asparagine as substrate. The enzyme had optimum activity at pH 8.6 and temperature 35 degrees C, both in the absence and presence of pyrimidine derivative and substrate saturation concentration at 6 mg/ml. For the enzymatic reaction in the absence and presence (1 to 3 mg/ml) of dihydropyrimidine derivative, Km values were 7.14, 5.26, 4.0, and 5.22 M, and Vmax values were 0.05, 0.035, 0.027 and 0.021 mg/ml/min, respectively. The kinetic values suggested that activity of enzyme was enhanced in the presence of dihydropyrimidine derivative.  相似文献   

16.
C A Gates  D B Northrop 《Biochemistry》1988,27(10):3834-3842
Aminoglycoside nucleotidyltransferase 2'-I follows a Theorell-Chance kinetic mechanism in which turnover is controlled by the rate-limiting release of the final product (Q), a nucleotidylated aminoglycoside [Gates, C. A., & Northrop, D. B. (1988) Biochemistry (second of three papers in this issue)]. The effects of viscosity on the kinetic constants of netilmicin, gentamicin C1, and sisomicin aminoglycoside substrates are as follows: no change in the substrate inhibition constants of all three antibiotics, a small but significant and highly unusual increase in Vmax/Km for netilmicin but large, normal decreases for gentamicin C1 and sisomicin, and marked decreases in the maximal velocities for all three. The lack of effect on substrate inhibition provides essential control experiments, signifying that glycerol does not interfere with binding of aminoglycosides to EQ and that the steady-state distribution of EQ does not increase as the release of Q is slowed by a viscosogen. The decrease in the Vmax/Km of better substrates indicates dominance by a diffusion-controlled component in the catalytic segment, attributed to the release of pyrophosphate. The presence of an increase in the Vmax/Km of the poor substrate, however, is inexplicable in terms of either single or multiple diffusion-controlled steps. Instead, it is here attributed to an equilibrium between conformers of the enzyme-nucleotide complex in which glycerol favors the conformation necessary for binding of aminoglycosides. The decrease in Vmax is consistent with the diffusion-controlled release of the final product determining enzymatic turnover.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Some of the essential structural requirements for the enzymatic reaction of pure human renin acting on pure human and rat angiotensinogen and on their synthetic tetradecapeptide substrates were investigated. The five carboxy terminal amino acids of synthetic tetradecapeptides played a significant role in substrate recognition and/or hydrolysis by human renin. Kinetic constants Km, Kcat and kcat/Km of the various human renin assays were different according to the substrate used. The presence of either an asparagine or a threonine residue in the S'4 renin subsite did not affect significantly the kinetic constant values. A tyrosine residue, rather than a histidine residue, in the S'3 renin subsite gave the best synthetic substrate studied. When tyrosine residue was present in the S'2 renin subsite an important decrease in kcat was observed. Human angiotensinogen was hydrolysed by human renin with lower Km and kcat values than those measured with human and porcine synthetic substrates, suggesting that the 3-dimensional structure of human angiotensinogen plays a key role in the hydrolysis. This finding was supported by assays performed with rat angiotensinogen, which was cleared by human renin with the same kcat value as rat tetradecapeptide, but with a 49-fold lower Km. Between human and rat angiotensinogen a kcat/Km value of only 2-fold higher has been found in the renin assay using human substrate.  相似文献   

18.
The kinetic constants of the site-specific endonuclease, ScaI, for various substrates were determined. We estimated Vmax and Km for octa-, deca-, dodeca-, and hexadecanucleotides and for plasmid pBR322 DNA. Vmax for these substrates were close, but Km were quite different (in decreasing order, octa- greater than deca-, dodeca-, hexadeca- greater than pBR322). The results were discussed with respect to the tertiary structure of substrate.  相似文献   

19.
The pH dependence of Vmax and Vmax/Km for hydrolysis of Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2 at the Gly-Leu bond by porcine synovial collagenase and gelatinase was determined in the pH range 5-10. Both enzymes exhibited bell-shaped dependencies on pH for these two kinetic parameters, indicating that activity is dependent on at least two ionizable groups, one of which must be unprotonated and the other protonated. For collagenase, Vmax/Km data indicate that in the substrate-free enzyme, these groups have apparent pK values of 7.0 and 9.5, while the Vmax profile indicates similar pK values of 6.8 and 10.1 for the enzyme-substrate complex. The corresponding pH profiles of gelatinase were similar to those of collagenase, indicating the importance of groups with apparent pK values of 5.9 and 10.0 for the free enzyme and 5.9 and 11.1 for the enzyme-substrate complex. When these kinetic constants were determined in D2O using the peptide substrate, there was no significant effect on Vmax or Km for collagenase or Km for gelatinase. However, there was a deuterium isotope effect of approximately 1.5 on Vmax for gelatinase. These results indicate that a proton transfer step is not involved in the rate-limiting step for collagenase, but may be limiting with gelatinase. The Arrhenius activation energies for peptide bond hydrolysis of the synthetic peptide as well as the natural substrates were also determined for both enzymes. The activation energy (81 kcal) for hydrolysis of collagen by collagenase was nine times greater than that determined for the synthetic substrate (9.2 kcal). In contrast, the activation energy for hydrolysis of gelatin by gelatinase (26.3 kcal) was only 2.4 times greater than that for the synthetic substrate (11 kcal).  相似文献   

20.
Inactive renin has been isolated from pooled amniotic fluid and purified approximately 642-fold. Prior to activation the isolates had approximately 4% of the activity found after activation. The observation is similar to that reported for inactive renin from chorionic cell culture and suggests a placental origin of amniotic fluid inactive renin. Using plasma from an estrogen-treated woman, renin substrate was recovered free of renin and inactive renin and a portion was separated into NMW and HMW components. The NMW form constituted approximately 93% and the HMW form approximately 7% of the renin substrate. Amniotic fluid inactive renin was used for determinations of enzyme-substrate kinetics with the pooled, NMW, and HMW plasma substrate and tetradecapeptide synthetic substrate, and the results were compared to similar determinations using standard renal renin. Using synthetic substrate, the kinetics of renal renin and amniotic fluid inactive renin before and after activation were similar. The kinetics of renal renin with pooled, NMW, and HMW plasma substrate were also similar. Amniotic fluid inactive renin had a lower Km with pooled than with NMW substrate, however, which resulted from a significantly smaller Km with HMW component. Although the affinity constants with pooled substrate were not different for renin and inactive renin, the Km of inactive renin was significantly less with the HMW component of plasma renin substrate. The observations are compatible with a role for placental inactive renin in normal pregnancy and suggest the possibility of a further role in hypertensive pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号