首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Admixture mapping is a recently developed method for identifying genetic risk factors involved in complex traits or diseases showing prevalence differences between major continental groups. Type 2 diabetes (T2D) is at least twice as prevalent in Native American populations as in populations of European ancestry, so admixture mapping is well suited to study the genetic basis of this complex disease. We have characterized the admixture proportions in a sample of 286 unrelated T2D patients and 275 controls from Mexico City and we discuss the implications of the results for admixture mapping studies. Admixture proportions were estimated using 69 autosomal ancestry-informative markers (AIMs). Maternal and paternal contributions were estimated from geographically informative mtDNA and Y-specific polymorphisms. The average proportions of Native American, European and, West African admixture were estimated as 65, 30, and 5%, respectively. The contributions of Native American ancestors to maternal and paternal lineages were estimated as 90 and 40%, respectively. In a logistic model with higher educational status as dependent variable, the odds ratio for higher educational status associated with an increase from 0 to 1 in European admixture proportions was 9.4 (95%, credible interval 3.8–22.6). This association of socioeconomic status with individual admixture proportion shows that genetic stratification in this population is paralleled, and possibly maintained, by socioeconomic stratification. The effective number of generations back to unadmixed ancestors was 6.7 (95% CI 5.7–8.0), from which we can estimate that genome-wide admixture mapping will require typing about 1,400 evenly distributed AIMs to localize genes underlying disease risk between populations of European and Native American ancestry. Sample sizes of about 2,000 cases will be required to detect any locus that contributes an ancestry risk ratio of at least 1.5.  相似文献   

2.
We carried out an admixture analysis of a sample comprising 1,019 individuals from all the provinces of Cuba. We used a panel of 128 autosomal Ancestry Informative Markers (AIMs) to estimate the admixture proportions. We also characterized a number of haplogroup diagnostic markers in the mtDNA and Y-chromosome in order to evaluate admixture using uniparental markers. Finally, we analyzed the association of 16 single nucleotide polymorphisms (SNPs) with quantitative estimates of skin pigmentation. In the total sample, the average European, African and Native American contributions as estimated from autosomal AIMs were 72%, 20% and 8%, respectively. The Eastern provinces of Cuba showed relatively higher African and Native American contributions than the Western provinces. In particular, the highest proportion of African ancestry was observed in the provinces of Guantánamo (40%) and Santiago de Cuba (39%), and the highest proportion of Native American ancestry in Granma (15%), Holguín (12%) and Las Tunas (12%). We found evidence of substantial population stratification in the current Cuban population, emphasizing the need to control for the effects of population stratification in association studies including individuals from Cuba. The results of the analyses of uniparental markers were concordant with those observed in the autosomes. These geographic patterns in admixture proportions are fully consistent with historical and archaeological information. Additionally, we identified a sex-biased pattern in the process of gene flow, with a substantially higher European contribution from the paternal side, and higher Native American and African contributions from the maternal side. This sex-biased contribution was particularly evident for Native American ancestry. Finally, we observed that SNPs located in the genes SLC24A5 and SLC45A2 are strongly associated with melanin levels in the sample.  相似文献   

3.
Admixture mapping (AM) is a promising method for the identification of genetic risk factors for complex traits and diseases showing prevalence differences among populations. Efficient application of this method requires the use of a genomewide panel of ancestry-informative markers (AIMs) to infer the population of origin of chromosomal regions in admixed individuals. Genomewide AM panels with markers showing high frequency differences between West African and European populations are already available for disease-gene discovery in African Americans. However, no such a map is yet available for Hispanic/Latino populations, which are the result of two-way admixture between Native American and European populations or of three-way admixture of Native American, European, and West African populations. Here, we report a genomewide AM panel with 2,120 AIMs showing high frequency differences between Native American and European populations. The average intermarker genetic distance is ~1.7 cM. The panel was identified by genotyping, with the Affymetrix GeneChip Human Mapping 500K array, a population sample with European ancestry, a Mesoamerican sample comprising Maya and Nahua from Mexico, and a South American sample comprising Aymara/Quechua from Bolivia and Quechua from Peru. The main criteria for marker selection were both high information content for Native American/European ancestry (measured as the standardized variance of the allele frequencies, also known as "f value") and small frequency differences between the Mesoamerican and South American samples. This genomewide AM panel will make it possible to apply AM approaches in many admixed populations throughout the Americas.  相似文献   

4.
Admixture occurs when individuals from parental populations that have been isolated for hundreds of generations form a new hybrid population. Currently, interest in measuring biogeographic ancestry has spread from anthropology to forensic sciences, direct-to-consumers personal genomics, and civil rights issues of minorities, and it is critical for genetic epidemiology studies of admixed populations. Markers with highly differentiated frequencies among human populations are informative of ancestry and are called ancestry informative markers (AIMs). For tri-hybrid Latin American populations, ancestry information is required for Africans, Europeans and Native Americans. We developed two multiplex panels of AIMs (for 14 SNPs) to be genotyped by two mini-sequencing reactions, suitable for investigators of medium-small laboratories to estimate admixture of Latin American populations. We tested the performance of these AIMs by comparing results obtained with our 14 AIMs with those obtained using 108 AIMs genotyped in the same individuals, for which DNA samples is available for other investigators. We emphasize that this type of comparison should be made when new admixture/population structure panels are developed. At the population level, our 14 AIMs were useful to estimate European admixture, though they overestimated African admixture and underestimated Native American admixture. Combined with more AIMs, our panel could be used to infer individual admixture. We used our panel to infer the pattern of admixture in two urban populations (Montes Claros and Manhua?u) of the State of Minas Gerais (southeastern Brazil), obtaining a snapshot of their genetic structure in the context of their demographic history.  相似文献   

5.
Self-reported race/ethnicity is frequently used in epidemiological studies to assess an individual’s background origin. However, in admixed populations such as Hispanic, self-reported race/ethnicity may not accurately represent them genetically because they are admixed with European, African and Native American ancestry. We estimated the proportions of genetic admixture in an ethnically diverse population of 396 mothers and 188 of their children with 35 ancestry informative markers (AIMs) using the STRUCTURE version 2.2 program. The majority of the markers showed significant deviation from Hardy-Weinberg equilibrium in our study population. In mothers self-identified as Black and White, the imputed ancestry proportions were 77.6% African and 75.1% European respectively, while the racial composition among self-identified Hispanics was 29.2% European, 26.0% African, and 44.8% Native American. We also investigated the utility of AIMs by showing the improved fitness of models in paraoxanase-1 genotype-phenotype associations after incorporating AIMs; however, the improvement was moderate at best. In summary, a minimal set of 35 AIMs is sufficient to detect population stratification and estimate the proportion of individual genetic admixture; however, the utility of these markers remains questionable.  相似文献   

6.
Hispanic and African American populations exhibit an increased risk of obesity compared with populations of European origin, a feature that may be related to inherited risk alleles from Native American and West African parental populations. However, a relationship between West African ancestry and obesity-related traits, such as body mass index (BMI), fat mass (FM), and fat-free mass (FFM), and with bone mineral density (BMD) in African American women has only recently been reported. In order to evaluate further the influence of ancestry on body composition phenotypes, we studied a Hispanic population with substantial European, West African, and Native American admixture. We ascertained a sample of Puerto Rican women living in New York (n=64), for whom we measured BMI and body composition variables, such as FM, FFM, percent body fat, and BMD. Additionally, skin pigmentation was measured as the melanin index by reflectance spectroscopy. We genotyped 35 autosomal ancestry informative markers and estimated population and individual ancestral proportions in terms of European, West African, and Native American contributions to this population. The ancestry proportions corresponding to the three parental populations are: 53.3±2.8% European, 29.1±2.3% West African, and 17.6±2.4% Native American. We detected significant genetic structure in this population with a number of different tests. A highly significant correlation was found between skin pigmentation and individual ancestry (R2=0.597, P<0.001) that was not attributable to differences in socioeconomic status. A significant association was also found between BMD and European admixture (R2=0.065, P=0.042), but no such correlation was evident with BMI or the remaining body composition measurements. We discuss the implications of our findings for the potential use of this Hispanic population for admixture mapping.  相似文献   

7.
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2 > 0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.  相似文献   

8.
Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations.  相似文献   

9.
Over the last 500 years, admixture among Amerindians, Europeans, and Africans, principally, has come to shape the present‐day gene pool of Mexicans, particularly Mestizos, who represent about 93% of the total Mexican population. In this work, we analyze the genetic data of 13 combined DNA index system‐short tandem repeats (CODIS‐STRs) in 1,984 unrelated Mestizos representing 10 population samples from different regions of Mexico, namely North, West, Central, and Southeast. The analysis of molecular variance (AMOVA) test demonstrated low but significant differentiation among Mestizos from different regions (FST = 0.34%; P = 0.0000). Although the spatial analysis of molecular variance (SAMOVA) predicted clustering Mestizo populations into four well‐delimited groups, the main differentiation was observed between Northwest when compared with Central and Southeast regions. In addition, we included analysis of individuals of Amerindian (Purepechas), European (Huelva, Spain), and African (Fang) origin. Thus, STRUCTURE analysis was performed identifying three well‐differentiated ancestral populations (k = 3). STRUCTURE results and admixture estimations by means of LEADMIX software in Mestizo populations demonstrated genetic heterogeneity or asymmetric admixture throughout Mexico, displaying an increasing North‐to‐South gradient of Amerindian ancestry, and vice versa regarding the European component. Interestingly, this distribution of Amerindian ancestry roughly reflects pre‐Hispanic Native‐population density, particularly toward the Mesoamerican area. The forensic, epidemiological, and evolutionary implications of these findings are discussed herein. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Before the arrival of the Spaniards in Nicaragua, diverse Native American groups inhabited the territory. In colonial times, Native Nicaraguan populations interacted with Europeans and slaves from Africa. To ascertain the extent of this genetic admixture and provide genetic evidence about the origin of the Nicaraguan ancestors, we analyzed the mitochondrial control region (HVSI and HVSII), 17 Y chromosome STRs, and 15 autosomal STRs in 165 Mestizo individuals from Nicaragua. To carry out interpopulation comparisons, HVSI sequences from 29 American populations were compiled from the literature. The results reveal a close relationship between Oto‐manguean, Uto‐Aztecan, Mayan groups from Mexico, and a Chibchan group to Nicaraguan lineages. The Native American contribution to present‐day Nicaraguan Mestizos accounts for most of the maternal lineages, whereas the majority of Nicaraguan Y chromosome haplogroups can be traced back to a West Eurasian origin. Pairwise Fst distances based on Y‐STRs between Nicaragua and European, African and Native American populations show that Nicaragua is much closer to Europeans than the other populations. Additionally, admixture proportions based on autosomal STRs indicate a predominantly Spanish contribution. Our study reveals that the Nicaraguan Mestizo population harbors a high proportion of European male and Native American female substrate. Finally, the amount of African ancestry is also interesting, probably because of the contribution of Spanish conquerors with NorthAfrican genetic traces or that of West African slaves. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.  相似文献   

12.
Gallbladder disease is a common source of morbidity in the Mexican American population. Genetic heritage has been proposed as a possible contributor, but evidence for this is limited. Because gallbladder disease has been associated with Native American heritage, genetic admixture may serve as a useful proxy for genetic susceptibility to the disease in epidemiologic studies. The objective of our study was to examine the possibility that gallbladder disease is associated with greater Native American admixture in Mexican Americans. This study used data from the Hispanic Health and Nutrition Examination Survey and was based on 1,145 Mexican Americans who underwent gallbladder ultrasonography and provided usable phenotypic information. We used the GM and KM immunoglobulin antigen system to generate estimates of admixture proportions and compared these for individuals with and without gallbladder disease. Overall, the proportionate genetic contributions from European, Native American, and African ancestries in our sample were 0.575, 0.390, and 0.035, respectively. Admixture proportions did not differ between cases and noncases: Estimates of Native American admixture for the two groups were 0.359 and 0.396, respectively, but confidence intervals for estimates overlapped. This study found no evidence for the hypothesis that greater Native American admixture proportion is associated with higher prevalence of gallbladder disease in Mexican Americans. Reasons for the finding that Native American admixture proportions did not differ between cases and noncases are discussed. Improving our understanding of the measurement, use, and limitations of genetic admixture may increase its usefulness as an epidemiologic tool as well as its potential for contributing to our understanding of disease distributions across populations. Am. J. Phys. Anthropol. 106:361–371, 1998. Published 1998 Wiley-Liss, Inc.  相似文献   

13.
BACKGROUND/AIMS: The Tobago Afro-Caribbean population is a valuable resource for studying the genetics of diseases that show significant differences in prevalence between populations of African descent and populations of other ancestries. Empirical confirmation of low European and Native American admixture may help in clarifying the ethnic variation in risk for such diseases. We hypothesize that the degree of European and Native American admixture in the Tobago population is low. METHODS: Admixture was estimated in a random sample of 220 men, from a population-based prostate cancer screening survey of 3,082 Tobago males, aged 40 to 79 years. We used a set of six autosomal markers with large allele frequency differences between the major ethnic populations involved in the admixture process, Europeans, Native Americans and West Africans. RESULTS: The ancestral proportions of Tobago population are estimated as 94.0+/-1.2% African, 4.6+/-3.4% European and 1.4+/-3.6% Native American. CONCLUSIONS: We conclude that Tobago Afro-Caribbean men are predominantly of West African ancestry, with minimal European and Native American admixture. The Tobago population, thus, may carry a higher burden of high-risk alleles of African origin for certain diseases than the more admixed African-American population. Conversely, this population may benefit from a higher prevalence of protective alleles of African origin.  相似文献   

14.
African descended populations exhibit an increased prevalence of asthma and allergies compared to Europeans. One approach to distinguish between environmental and genetic explanations for this difference is to study relationships of asthma risk to individual admixture. We aimed to determine the admixture proportions of a case-control sample from the Caribbean Coast of Colombia currently participating in genetic studies for asthma, and to test for population stratification and association between African ancestry and asthma and total serum IgE levels (tIgE). We genotyped 368 asthmatics and 365 non-asthmatics for 52 autosomal ancestry informative markers, six mtDNA haplogroups and nine haplogroups and five microsatellites in Y chromosome. Autosomal admixture proportions, population stratification, and associations between ancestry and the phenotypes were estimated by ADMIXMAP. The average admixture proportions among asthmatics were 42.8% European, 39.9% African and 17.2% Native American and among non-asthmatics they were 44.2% (P = 0.068), 37.6% (P = 0.007) and 18.1% (P = 0.050), respectively. In the total sample, the paternal contributions were 71% European, 25% African and 4.0% Native American and the maternal lineages were 56.8% Native American, and 20.2% African; 22.9% of the individuals carried other non-Native American mtDNA haplogroups. African ancestry was significantly associated with asthma (OR: 2.97; 95% CI: 1.08–8.08), high tIgE (OR: 1.9; 95% CI: 1.17–3.12) and socioeconomic status (OR = 0.64; 95% CI: 0.47–0.87). Significant population stratification was observed in this sample. Our findings indicate that genetic factors can explain the association between asthma and African ancestry and suggest that this sample is a useful resource for performing admixture mapping for asthma.  相似文献   

15.
The relationship between ethnicity and biology is of interest to anthropologists, biomedical scientists, and historians in understanding how human groups are constructed. Ethnic self-identification in recently admixed groups such as Hispanics, African Americans, and Native Americans (NA) is likely to be complex due to the heterogeneity in individual admixture proportions and social environments within these groups. This study examines the relationships between self-identified ethnicity, self-estimated admixture proportions, skin pigmentation, and genetic marker estimated admixture proportions. These measures were assessed using questionnaires, skin color measurements, and genotyping of a panel of 76 ancestry informative markers, among 170 Hispanics and NAs from New Mexico, a state known for its complex history of interactions between people of NA and European (EU) ancestry. Results reveal that NAs underestimate their degree of EU admixture, and that Hispanics underestimate their degree of NA admixture. Within Hispanics, genetic-marker estimated admixture is better predicted by forehead skin pigmentation than by self-estimated admixture. We also find that Hispanic individuals self-identified as "half-White, half Hispanic" and "Spanish" have lower levels of NA admixture than those self-identified as "Mexican" and "Mexican American." Such results highlight the interplay between culture and biology in how individuals identify and view themselves, and have implications for how ethnicity and disease risk are assessed in a medical setting.  相似文献   

16.
Markers with large differences in allele frequencies between ethnicities provide ancestry information that can be applied to genetic studies. We identified over 100 biallelic ancestry informative markers (AIMs) with large allele frequency differences between European Americans (EA) and Pima Amerindians from laboratory and database screens. For 35 of these markers, Mayan, Yavapai and Quechuan Amerindians were genotyped and compared with EA and Pima allele frequencies. Markers with large allele frequency differences between EA and one Amerindian tribe showed only small differences between the Amerindian tribes. Examination of structure in individuals demonstrated a clear separation of subjects of European from those of Amerindian ancestry, and similarity between individuals from disparate Amerindian populations. The AIMs demonstrated the variation in ancestral composition of individual Mexican Americans, providing evidence of applicability in admixture mapping and in controlling for structure in association tests. In addition, a high percentage of single-nucleotide polymorphisms (SNPs) selected on the basis of large frequency differences between EA and Asian populations had large allele frequency differences between EA and Amerindians, suggesting an efficient method for greatly expanding AIMs for use in admixture mapping/structure analysis in Mexican Americans. Together, these data provide additional support for the practical application of admixture mapping in the Mexican American population.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

17.
We and others have identified several hundred ancestry informative markers (AIMs) with large allele frequency differences between different major ancestral groups. For this study, a panel of 199 widely distributed AIMs was used to examine a diverse set of 796 DNA samples including self-identified European Americans, West Africans, East Asians, Amerindians, African Americans, Mexicans, Mexican Americans, Puerto Ricans and South Asians. Analysis using a Bayesian clustering algorithm (STRUCTURE) showed grouping of individuals with similar ethnic identity without any identifier other than the AIMs genotyping and showed admixture proportions that clearly distinguished different individuals of mixed ancestry. Additional analyses showed that, for the majority of samples, the predicted ethnic identity corresponded with the self-identified ethnicity at high probability (P > 0.99). Overall, the study demonstrates that AIMs can provide a useful adjunct to forensic medicine, pharmacogenomics and disease studies in which major ancestry or ethnic affiliation might be linked to specific outcomes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago.  相似文献   

19.
The "thrifty genotype" hypothesis proposes that the high prevalence of type 2 diabetes (T2D) in Native Americans and admixed Latin Americans has a genetic basis and reflects an evolutionary adaptation to a past low calorie/high exercise lifestyle. However, identification of the gene variants underpinning this hypothesis remains elusive. Here we assessed the role of Native American ancestry, socioeconomic status (SES) and 21 candidate gene loci in susceptibility to T2D in a sample of 876 T2D cases and 399 controls from Antioquia (Colombia). Although mean Native American ancestry is significantly higher in T2D cases than in controls (32% v 29%), this difference is confounded by the correlation of ancestry with SES, which is a stronger predictor of disease status. Nominally significant association (P<0.05) was observed for markers in: TCF7L2, RBMS1, CDKAL1, ZNF239, KCNQ1 and TCF1 and a significant bias (P<0.05) towards OR>1 was observed for markers selected from previous T2D genome-wide association studies, consistent with a role for Old World variants in susceptibility to T2D in Latin Americans. No association was found to the only known Native American-specific gene variant previously associated with T2D in a Mexican sample (rs9282541 in ABCA1). An admixture mapping scan with 1,536 ancestry informative markers (AIMs) did not identify genome regions with significant deviation of ancestry in Antioquia. Exclusion analysis indicates that this scan rules out ~95% of the genome as harboring loci with ancestry risk ratios >1.22 (at P < 0.05).  相似文献   

20.
As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号