首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Many retroviruses express gag-pol or gag-pro-pol polypeptides by coupling their translation from overlapping reading frames with -1 ribosomal frameshifts. Here, we show that the well-known ribosomal frameshift signals found in retroviral mRNA will provoke Escherichia coli ribosomes to shift frame in the same manner as their eukaryotic counterparts. Ribosomes of E. coli respond in vivo to both the tandem slippery codons present at the retroviral frameshift site and the 3' flanking sequence. Slight alteration of the mouse mammary tumor virus gag-pro frameshift site from A-AAA-AAC to A-AAA-AAG boosts the level of frameshifting in E. coli to over 50%. This suggests that A-AAA-AAG, and its slippery relatives, may be utilized by E. coli genes as sites of high-level ribosomal frameshifting. This observed conservation of response to retroviral frameshift signals affords new avenues to dissect the mechanism of ribosomal frameshifting evoked by these mRNA sequences.  相似文献   

2.
Release factor 2 frameshifting sites in different bacteria   总被引:5,自引:0,他引:5       下载免费PDF全文
The mRNA encoding Escherichia coli polypeptide chain release factor 2 (RF2) has two partially overlapping reading frames. Synthesis of RF2 involves ribosomes shifting to the +1 reading frame at the end of the first open reading frame (ORF). Frameshifting serves an autoregulatory function. The RF2 gene sequences from the 86 additional bacterial species now available have been analyzed. Thirty percent of them have a single ORF and their expression does not require frameshifting. In the ~70% that utilize frameshifting, the sequence cassette responsible for frameshifting is highly conserved. In the E. coli RF2 gene, an internal Shine–Dalgarno (SD) sequence just before the shift site was shown earlier to be important for frameshifting. Mutagenic data presented here show that the spacer region between the SD sequence and the shift site influences frameshifting, and possible mechanisms are discussed. Internal translation initiation occurs at the shift site, but any functional role is obscure.  相似文献   

3.
Ribosomal frameshifting is used by various organisms to maximize protein coding potential of genomic sequences. It is commonly exploited by RNA viruses to overcome the constraint of their limited genome size. Frameshifting requires specific RNA structural features, such as a suitable heptanucleotide “slippery” sequence and an RNA pseudoknot. Previous genomic analysis of HIV-1 indicated the potential for several hidden genes encoded through frameshifting; one of these, overlapping the envelope gene, has an RNA pseudoknot just downstream from a slippery sequence, AAAAAGA that features an adenine quadruplet prior to a potential hungry arginine codon (AGA). This env-frameshift (env-fs) gene has been shown to encode a truncated glutathione peroxidase homologue, with both antioxidant and anti-apoptotic activities in transfected cells. Using a dual reporter cell-based frameshift assay, we demonstrate that the env-fs frameshift sequence is active in vitro. Furthermore, in arginine deficient media, env-fs frameshifting increased over 100% (p < 0.005), consistent with the hypothesized hungry codon mechanism. As a response to arginine deficiency, increased expression of the antioxidant viral GPx gene (env-fs) by upregulation of frameshifting could be protective to HIV-infected cells, as a countermeasure to the increased oxidative stress induced by arginine deficiency (because NO is a known scavenger of hydroxyl radical).  相似文献   

4.
Translational frameshifting is a ubiquitous, if rare, form of alternative decoding in which ribosomes spontaneously shift reading frames during translation elongation. In studying +1 frameshifting in Ty retrotransposons of the yeast S. cerevisiae, we previously showed that unusual P site tRNAs induce frameshifting. The frameshift-inducing tRNAs we show here are near-cognates for the P site codon. Their abnormal decoding induces frameshifting in either of two ways: weak codon-anticodon pairing allows the tRNA to disengage from the mRNA and slip +1, or an unusual codon-anticodon structure interferes with cognate in-frame decoding allowing out-of-frame decoding in the A site. We draw parallels between this mechanism and a proposed mechanism of frameshift suppression by mutant tRNAs.  相似文献   

5.
Antisense-induced ribosomal frameshifting   总被引:1,自引:0,他引:1  
Programmed ribosomal frameshifting provides a mechanism to decode information located in two overlapping reading frames by diverting a proportion of translating ribosomes into a second open reading frame (ORF). The result is the production of two proteins: the product of standard translation from ORF1 and an ORF1–ORF2 fusion protein. Such programmed frameshifting is commonly utilized as a gene expression mechanism in viruses that infect eukaryotic cells and in a subset of cellular genes. RNA secondary structures, consisting of pseudoknots or stem–loops, located downstream of the shift site often act as cis-stimulators of frameshifting. Here, we demonstrate for the first time that antisense oligonucleotides can functionally mimic these RNA structures to induce +1 ribosomal frameshifting when annealed downstream of the frameshift site, UCC UGA. Antisense-induced shifting of the ribosome into the +1 reading frame is highly efficient in both rabbit reticulocyte lysate translation reactions and in cultured mammalian cells. The efficiency of antisense-induced frameshifting at this site is responsive to the sequence context 5′ of the shift site and to polyamine levels.  相似文献   

6.
T H Tzeng  C L Tu    J A Bruenn 《Journal of virology》1992,66(2):999-1006
The large double-stranded RNA of the Saccharomyces cerevisiae (yeast) virus has two large overlapping open reading frames on the plus strand, one of which is translated via a -1 ribosomal frameshift. Sequences including the overlapping region, placed in novel contexts, can direct ribosomes to make a -1 frameshift in wheat germ extract, Escherichia coli and S. cerevisiae. This sequence includes a consensus slippery sequence, GGGUUUA, and has the potential to form a pseudoknot 3' to the putative frameshift site. Based on deletion analysis, a region of 71 nucleotides including the potential pseudoknot and the putative slippery sequence is sufficient for frameshifting. Site-directed mutagenesis demonstrates that the pseudoknot is essential for frameshifting.  相似文献   

7.
External suppressors, sufS, of a -1 frameshift mutant cause ribosomes to shift into the -1 frame when reading the sequence CAG GGA GUG. The resulting product is not Gln-Gly-Val but Gln-Gly-Ser with Ser being encoded by the underlined AGU. The alleles investigated are approximately 2% efficient in causing frameshifting. Two other suppressors, hopR and hopE of the same -1 frameshift mutant, cause some ribosomes reading the sequence GUG UG to decode a single amino acid, Val, from the five nucleotides. The possibility is considered that peptidyl-tRNA(Val) dissociates from the mRNA, but re-pairs in a triplet manner after the mRNA slips forward by two bases.  相似文献   

8.
The genomic RNA of beet western yellows virus (BWYV) contains a potential translational frameshift signal in the overlap region of open reading frames ORF2 and ORF3. The signal, composed of a heptanucleotide slippery sequence and a downstream pseudoknot, is similar in appearance to those identified in retroviral RNAs. We have examined whether the proposed BWYV signal functions in frameshifting in three translational systems, i.c. in vitro in a reticulocyte lysate or a wheat germ extract and in vivo in E. coli. The efficiency of the signal in the eukaryotic system is low but significant, as it responds strongly to changes in either the slip sequence or the pseudoknot. In contrast, in E. coli there is hardly any response to the same changes. Replacing the slip sequence to the typical prokaryotic signal AAAAAAG yields more than 5% frameshift in E. coli. In this organism the frameshifting is highly sensitive to changes in the slip sequence but only slightly to disruption of the pseudoknot. The eukaryotic assay systems are barely sensitive to changes in either AAAAAAG or in the pseudoknot structure in this construct. We conclude that eukaryotic frameshift signals are not recognized by prokaryotes. On the other hand the typical prokaryotic slip sequence AAAAAAG does not lead to significant frameshifting in the eukaryote. In contrast to recent reports on the closely related potato leafroll virus (PLRV) we show that the frameshifting in BWYV is pseudoknot-dependent.  相似文献   

9.
Programmed translational frameshift sites are sequences in mRNAs that promote frequent stochastic changes in translational reading frame allowing expression of alternative forms of protein products. The EST3 gene of Saccharomyces cerevisiae, encoding a subunit of telomerase, uses a programmed +1 frameshift site in its expression. We show that the site is complex, consisting of a heptameric sequence at which the frameshift occurs and a downstream 27-nucleotide stimulator sequence that increases frameshifting eightfold. The stimulator appears to be modular, composed of at least three separable domains. It increases frameshifting only when ribosomes pause at the frameshift site because of a limiting supply of a cognate aminoacyl-tRNA and not when pausing occurs at a nonsense codon. These data suggest that the EST3 stimulator may modulate access by aminoacyl-tRNAs to the ribosomal A site by interacting with several targets in a ribosome paused during elongation.  相似文献   

10.
The mechanism favoured for -1 frameshifting at typical retroviral sites is a pre-translocation simultaneous slippage model. An alternative post-translocation mechanism would also generate the same protein sequence across the frameshift site and therefore in this study the strategic placement of a stop codon has been used to distinguish between the two mechanisms. A 26 base pair frameshift sequence from the HIV-1 gag-pol overlap has been modified to include a stop codon immediately 3' to the heptanucleotide frameshift signal, where it often occurs naturally in retroviral recoding sites. Stop codons at the 3'-end of the heptanucleotide sequence decreased the frame-shifting efficiency on prokaryote ribosomes and the recording event was further depressed when the levels of the release factors in vivo were increased. In the presence of elevated levels of a defective release factor 2, frameshifting efficiency in vivo was increased in the constructs containing the stop codons recognized specifically by that release factor. These results are consistent with the last six nucleotides of the heptanucleotide slippery sequence occupying the ribosomal E and P sites, rather than the P and A sites, with the next codon occupying the A site and therefore with a post-translocation rather than a pre-translocation -1 slippage model.  相似文献   

11.
12.
A mutation shown to cause resistance to chloramphenicol inSaccharomyces cerevisiae was mapped to the central loop in domain V of the yeast mitochondrial 21S rRNA. The mutant 21S rRNA has a base pair exchange from U2677 (corresponding to U2504 inEscherichia coli) to C2677, which significantly reduces rightward frameshifting at a UU UUU UCC A site in a + 1 U mutant. There is evidence to suggest that this reduction also applies to leftward frameshifting at the same site in a – 1 U mutant. The mutation did not increase the rate of misreading of a number of mitochondrial missense, nonsense or frameshift (of both signs) mutations, and did not adversely affect the synthesis of wild-type mitochondrial gene products. It is suggested here that ribosomes bearing either the C2677 mutation or its wild-type allele may behave identically during normal decoding and only differ at sites where a ribosomal stall, by permitting non-standard decoding, differentially affects the normal interaction of tRNAs with the chloramphenicol resistant domain V. Chloramphenicol-resistant mutations mapping at two other sites in domain V are described. These mutations had no effect on frameshifting.  相似文献   

13.
Synthesis of the Gag-Pol protein of the human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshifting when ribosomes translate the unspliced viral messenger RNA. This frameshift occurs at a slippery sequence followed by an RNA structure motif that stimulates frameshifting. This motif is commonly assumed to be a simple stem-loop for HIV-1. In this study, we show that the frameshift stimulatory signal is more complex than believed and consists of a two-stem helix. The upper stem-loop corresponds to the classic stem-loop, and the lower stem is formed by pairing the spacer region following the slippery sequence and preceding this classic stem-loop with a segment downstream of this stem-loop. A three-purine bulge interrupts the two stems. This structure was suggested by enzymatic probing with nuclease V1 of an RNA fragment corresponding to the gag/pol frameshift region of HIV-1. The involvement of the novel lower stem in frameshifting was supported by site-directed mutagenesis. A fragment encompassing the gag/pol frameshift region of HIV-1 was inserted in the beginning of the coding sequence of a reporter gene coding for the firefly luciferase, such that expression of luciferase requires a -1 frameshift. When the reporter was expressed in COS cells, mutations that disrupt the capacity to form the lower stem reduced frameshifting, whereas compensatory changes that allow re-formation of this stem restored the frameshift efficiency near wild-type level. The two-stem structure that we propose for the frameshift stimulatory signal of HIV-1 differs from the RNA triple helix structure recently proposed.  相似文献   

14.
Translating ribosomes can shift reading frame at specific sites with high efficiency for gene expression purposes. The most common type of shift to the -1 frame involves a tandem realignment of two anticodons from pairing with mRNA sequence of the form X XXY YYZ to XXX YYY Z where the spaces indicate the reading frame. The predominant -1 shift site of this type in eubacteria is A AAA AAG. The present work shows that in Escherichia coli the identity of the 6 nt 3' of this sequence can be responsible for a 14-fold variation in frameshift frequency. The first 3' nucleotide has the primary effect, with, in order of decreasing efficiency, U > C > A > G. This effect is independent of other stimulators of frameshifting. It is detected with other X XXA AAG sequences, but not with several other heptameric -1 shift sites. Pairing of E. coli tRNALYS with AAG is especially weak at the third codon position. We propose that strong stacking of purines 3' of AAG stabilizes pairing of tRNALys, diminishing the chance of codon:anticodon dissociation that is a prerequisite for the realignment involved in frameshifting.  相似文献   

15.
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.  相似文献   

16.
17.
Normal translation of the gene for E. coli release factor 2 (RF-2) is characterized by a +1 frameshift event that occurs with 30-50% efficiency. Frameshifting on synthetic RF-2 mRNA by eukaryotic ribosomes has also been observed, even though they lack the capability to interact with the frameshift signal in the same manner as prokaryotic ribosomes. We have mutagenized the sequence of the RF-2 gene to eliminate the need for a frameshift, thereby allowing frameshifting efficiency to be measured by direct comparison of RF-2 production from the mutant with production from the wild-type. Measurements using this approach confirm that frameshifting by rabbit reticulocyte lysate ribosomes occurs at the frameshift region, but with a limited efficiency of approximately 0.4%.  相似文献   

18.
19.
Here we investigated ribosomal pausing at sites of programmed -1 ribosomal frameshifting, using translational elongation and ribosome heelprint assays. The site of pausing at the frameshift signal of infectious bronchitis virus (IBV) was determined and was consistent with an RNA pseudoknot-induced pause that placed the ribosomal P- and A-sites over the slippery sequence. Similarly, pausing at the simian retrovirus 1 gag/pol signal, which contains a different kind of frameshifter pseudoknot, also placed the ribosome over the slippery sequence, supporting a role for pausing in frameshifting. However, a simple correlation between pausing and frameshifting was lacking. Firstly, a stem-loop structure closely related to the IBV pseudoknot, although unable to stimulate efficient frameshifting, paused ribosomes to a similar extent and at the same place on the mRNA as a parental pseudoknot. Secondly, an identical pausing pattern was induced by two pseudoknots differing only by a single loop 2 nucleotide yet with different functionalities in frameshifting. The final observation arose from an assessment of the impact of reading phase on pausing. Given that ribosomes advance in triplet fashion, we tested whether the reading frame in which ribosomes encounter an RNA structure (the reading phase) would influence pausing. We found that the reading phase did influence pausing but unexpectedly, the mRNA with the pseudoknot in the phase which gave the least pausing was found to promote frameshifting more efficiently than the other variants. Overall, these experiments support the view that pausing alone is insufficient to mediate frameshifting and additional events are required. The phase dependence of pausing may be indicative of an activity in the ribosome that requires an optimal contact with mRNA secondary structures for efficient unwinding.  相似文献   

20.
A translational frameshift is necessary in the synthesis of Escherichia coli release factor 2 (RF-2) to bypass an in-frame termination codon within the coding sequence. High-efficiency frameshifting around this codon can occur on eukaryotic ribosomes as well as prokaryotic ribosomes. This was determined from the relative efficiency of translation of RF-2 RNA compared with that for the other release factor RF-1, which lacks the in-frame premature stop codon. Since the termination product is unstable an absolute measure of the efficiency of frameshifting has not been possible. A gene fusion between trpE and RF-2 was carried out to give a stable termination product as well as the frameshift product, thereby allowing a direct determination of frameshifting efficiency. The extension of RF-2 RNA near its start codon with a fragment of the trpE gene, while still allowing high efficiency frameshifting on prokaryotic ribosomes, surprisingly gives a different estimate of frameshifting on the eukaryotic ribosomes than that obtained with RF-2 RNA alone. This paradox may be explained by long distance context effects on translation rates in the frameshift region created by the trpE sequences in the gene fusion, and may reflect that pausing and translation rate are fundamental factors in determining the efficiency of frameshifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号