首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the beginning of this century there have been substantial declines in the distribution and abundance of native Megalagrion damselflies on the Hawaiian Island of Oahu. Native damselflies have also vanished from most low elevation areas on other Hawaiian Islands, although historically, lotic and wetland dwelling damselfly species were once common throughout the archipelago. It is hypothesized that poeciliid fish introduced for biological control have caused the decline of four stream-breeding damselfly species on Oahu, and the extinction or near-extinction of two other species in Hawaii. This study documents the presence of remnant Megalagrion populations in Oahu streams, wetlands and estuaries, and records the elevational distributions of introduced fish in each waterbody surveyed. The distributions of introduced Odonata are also recorded, because the seven species of damselflies and dragonflies introduced to Oahu since 1936 present another potential threat to native Hawaiian damselflies. Native damselfly and introduced poeciliid fish distributions were mutually exclusive on Oahu, and it is concluded that this is probably due to predation by the introduced fish. By contrast, even the rarest native Megalagrion damselflies were found in areas containing introduced damselflies and dragonflies.  相似文献   

2.
Rainbow trout introduced into Hokkaido in 1920 have become widely distributed due to extensive release into many reservoirs and lakes for sport-fishing; their presence often results in reductions of native fish populations. We analyzed and predicted the relationship between the probability of occurrence of rainbow trout and the proximity of dams (or attributed reservoirs), using a database of the presence or absence of rainbow trout collected during 1960–2004 in Hokkaido to clarify the spread patterns of exotic species (e.g., rainbow trout) due to large-scale damming over a long period. Rainbow trout were abundant in streams within approximately 10 km of dams in recent years, regardless of whether the stream was up- or down-stream from the dam and after accounting for the effects of other environmental variables (e.g. elevation, population density, and survey year). A delayed increase in trout occurrence below dams as compared with above dams suggests that the occurrence below dams may be largely due to escapement of stocked populations and a continuously increasing abundance since 1970. The management of dams and reservoirs is necessary to prevent further spread of rainbow trout because they can threaten habitats of native Japanese salmonids through various mechanisms.
Mideok HanEmail:
  相似文献   

3.
This study investigated the impact of introduced rainbow trout, Oncorhynchus mykiss, on the distribution and feeding of mountain catfish, Amphilius uranoscopus, on the Nyika Plateau, Malawi. Twenty-four sites were sampled over three different periods in three rivers. Fish habitat units were identified as separate riffle or pool, about 100 m in length, at each site. Each habitat unit was sampled for fish, invertebrates and physical habitat characteristics. Twenty four and 20 habitat units were sampled, respectively, from sites with catfish and sites with trout and catfish. In the absence of trout, the mountain catfish was associated with all depth ranges, with strong preference to shallow and moderate depth, and moderate to fast flow on coarse substratum type (gravel, pebble and boulder). In the presence of trout, the catfish was frequently associated with very shallow depth and slow flow. In its natural habitat, the catfish fed randomly, but preferred the most abundant invertebrate taxa, especially black fly larvae (Simuliidae). In the presence of trout, the catfish preferred mostly the chironomids. The preference by catfish for Simuliidae, also preferred by trout, was less in the trout streams than in its natural habitat. The prey taxa in the catfish stream were diverse, and consisted of large invertebrate predators. Trout streams were dominated by few prey taxa, especially black flies and chironomids. The catfish of the Nyika Plateau may represent genetically unique populations in southern Africa. Introductions of trout into rivers where they currently do not occur on the Nyika should be prevented in order to maintain the genetic diversity of the Amphilius uranoscopus species complex. Handling editor: J. A. Cambray  相似文献   

4.
Rainbow trout, Oncorhynchus mykiss, and crayfish, Orconectes virilis, have been introduced for the last century into North American streams inhabited by native fishes. We sought to determine the behavioral response of a federally threatened cyprinid, Little Colorado spinedace, Lepidomeda vittata, in the concurrent presence of multiple nonnative predators (rainbow trout and crayfish), as well as the response to the presence of a combination of native (Apache trout, Oncorhynchus apache) and nonnative (crayfish) predators. We held spinedace in artificial streams and exposed them to four treatments: (1) control, (2) crayfish added, (3) trout added, and (4) both crayfish and trout added. Only a single spinedace was consumed over the course of the experiments; it was captured and preyed upon by a crayfish. When both crayfish and Apache trout were present, spinedace response was similar to what it was when only Apache trout were present (decreased movement in and out of refuge), suggesting that crayfish and Apache trout did not mutually influence spinedace behavior. However, when both rainbow trout and crayfish were present, spinedace not only decreased movements in and out of refuge, but also decreased activity rates. We suggest that crayfish and rainbow trout mutually influence spinedace behavior and recommend control or elimination of crayfish and rainbow trout from spinedace critical habitat or potential reintroduction sites. In addition, potential reintroduction sites for Apache trout should be evaluated based on presence of crayfish and spinedace to avoid potential multiple predator interactions and negative effects on spinedace.  相似文献   

5.
Terrestrial environments allow the adults of some aquatic insects to disperse between headwater streams, which may be important for maintaining population connectivity and persistence. Winged adult stages of aquatic insects are particularly sensitive to degradation of terrestrial habitat, relying on it for food, reproduction and dispersal. In this study we examined the genetic pattern of the Australian mayfly Ulmerophlebia sp. AV2, in north‐eastern New South Wales, and compared the genetic diversity in forested and partially deforested sub‐catchments. Our hypotheses were (i) patterns of mitochondrial DNA (mtDNA) variation in the Leptophlebiidae mayfly Ulmerophlebia sp. AV2 show a pattern of structuring that reflects low or widespread dispersal along the stream network and across catchments; and (ii) genetic diversity will be lower in partially deforested sub‐catchments compared to forested sub‐catchments. We found gene flow was not restricted among headwater streams within sub‐catchments but was restricted at distances >15 km. Genetic diversity was high (mean haplotype diversity >0.85) in both control and harvested sub‐catchments. Instead, a historical signature of population expansion was detected which is consistent with findings for other aquatic insect taxa of eastern Australia. Our results suggest that the selective harvesting management strategy, including the use of riparian buffer zones, within these sub‐catchments does not appear to restrict dispersal between streams or erode diversity within streams for Ulmerophlebia sp. AV2. Selective harvesting therefore appears to have minimal impacts on terrestrial/aquatic links in the life cycle of this insect.  相似文献   

6.
Impacts of alien rainbow trout (Oncorhynchus mykiss) on critically endangered Berg River redfin (Pseudobarbus burgi), Cape kurper (Sandelia capensis) and Cape galaxias (Galaxias zebratus) in the upper Berg River were investigated in terms of predation and spatial interactions. Trout stomach contents revealed that invertebrates dominate trout diet within the study area, whilst only six fish were recovered from 45 stomachs. The apparent low fish predation success of O. mykiss within the stream suggests a smaller impact compared to that of other alien piscivores such as bass (Micropterus spp.). Galaxias zebratus was the only fish species identified as prey, and its conservation status in the river requires further investigation. Snorkelling surveys revealed that rainbow trout co-exist with S. capensis and adult P. burgi within pools on this river. Galaxias zebratus was absent from the pools, while P. burgi juveniles were segregated from rainbow trout along a depth gradient, possibly indicating avoidance behaviour. Sandelia capensis juveniles may avoid predation by hiding under rocks. Rainbow trout probably compete with indigenous fish for food and space in the pools, though this could not be quantified. The impacts of O. mykiss on all indigenous fauna within the river are likely to be density-dependent.  相似文献   

7.
The important contribution of terrestrial invertebrates to the energy budget of drift-foraging fishes has been well documented in many forested headwater streams. However, relatively little attention has been focused on the behavioral mechanisms behind such intensive exploitation. We tested for the hypothesis that active prey selection by fishes would be an important determinant of terrestrial invertebrates contribution to fish diets in a forested headwater stream in northern Japan. Rainbow trout, Oncorhynchus mykiss, were estimated to consume 57.12 mg m–2 day–1 (dry mass) terrestrial invertebrates, 77% of their total input (73.89 mg m–2 day–1), there being high selectivity for the former from stream drift. Both the falling input and drift of terrestrial invertebrates peaked at around dusk, decreasing dramatically toward midnight. In contrast, both aquatic insect adults and benthic invertebrates showed pronounced nocturnal drift. Because the prey consumption rates of rainbow trout were high at dawn and dusk, decreasing around midnight, the greater contribution of terrestrial invertebrates to trout diet was regarded as being partly influenced by the difference in diel periodicity of availability among prey categories. In addition, selectivity also depended upon differences in individual prey size among aquatic insect adults, and benthic and terrestrial invertebrates, the last category being largest in both the stream drift and the trout diets. We concluded that differences in both the timing of supplies and prey size among the three prey categories were the primary factors behind the selective foraging on terrestrial invertebrates by rainbow trout.  相似文献   

8.
To infer the distribution pattern of introduced rainbow trout, Oncorhynchus mykiss, we compared abiotic factors among tributaries with and without rainbow trout in the Atsuta River, Hokkaido, Japan. Rainbow trout were present in 10 of the 24 tributaries. Stepwise logistic regression analysis indicated that the occurrence of rainbow trout was more likely in low-gradient tributaries and was negatively correlated with elevation. Our results indicate that the successful establishment of rainbow trout can be predicted using abiotic factors, including elevation and gradient.  相似文献   

9.
Molecular genetic assays can contribute to conservation of aquatic taxa by assessing evolutionary and taxonomic distinctiveness, levels of genetic variation within and between populations, and the degree of introgression with introduced taxa. The Athabasca River drainage of␣western Alberta, Canada is one of only three (and the largest) drainages flowing east of the continental divide that contain native populations of rainbow trout (Salmonidae: Oncorhynchus mykiss). The “Athabasca” rainbow trout has been considered a preglacial relict worthy of special conservation measures. In addition, the native range of Athabasca rainbow trout has seen many instances of introductions of non-native populations since the beginning of the 20th century. We assayed rainbow trout from the Athabasca River drainage, from hatchery populations, and from representative populations in adjacent regions (N = 49 localities) for variation at 10 microsatelite loci to assess the level of evolutionary distinctiveness of Athabasca rainbow trout, and to assess the levels of introgression with non-native hatchery fish. We found that native Athabasca rainbow trout did not form a distinctive genetic assemblage and that the greatest amount of allele frequency variation was attributable to contemporary drainage systems (29.3%) rather than by a Athabasca/non-Athabasca distinction (12.6%). We found that 78% of all fish were confidently assigned to a “wild” rather than a “hatchery” genetic grouping and that most of the inferred introgression with hatchery fish was restricted to a few localities (N = 6). Our results suggest that: (i)␣Athabasca River rainbow trout are likely postglacial immigrants from adjacent populations of the Fraser River, and (ii) that there is no evidence of widespread introgression of hatchery alleles into native Athabasca River drainage rainbow trout.  相似文献   

10.
The ratios of Rb to Cs contents were studied in five fish species from seven lakes located in the Patagonia Andean Range, Argentina in order to trace fish diet. The species studied were native velvet catfish (Diplomistes viedmensis) and creole perch (Percichthys trucha), and exotic brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), and brook trout (Salvenilus fontinalis). Rainbow trout specimens from two farms were also studied, as well as fish food items and native mussels (Diplodon chilensis). Rb and Cs concentrations were determined by instrumental neutron activation analysis. A positive correlation of Cs concentration in the muscle of velvet catfish with fish length was observed, probably associated with the long biological half-life of this element in this species, whereas the Rb concentration remained constant, hence inhibiting the use of Rb-Cs ratios as a tracer in this case. Seasonal variations observed for rainbow trout and Cs concentration background bias in one of the lakes studied are also a limiting factor to the use of Rb-Cs ratios as a diet tracer. Rb-Cs ratios allowed clear differentiation of rainbow trout raised in farms from the natural specimens that lived in the same environment, in agreement with Rb-Cs ratios determined in both diets. Rb-Cs ratios in rainbow trout showed significant differences between Rivadavia and Futalaufquen lakes compared to Moreno and Nahuel Huapi lakes, which could be associated with a higher participation of plankton in the diet in the first case. No relevant variations in Rb-Cs ratios of brown trout were observed, probably because of the similarity in the diet.  相似文献   

11.
J. Moody  E. Gaten 《Hydrobiologia》1982,88(1-2):207-209
The development of populations of eyeflukes Diplostomum spathaceum and Tylodelphys clavata in trout introduced into Rutland Water is related to the availability of infected Limnaea pereger, the first intermediate host, and the differential resistance to eyeflukes in Salmo gairdneri and S. trutta. The numbers of snail and fish intermediate hosts were monitored from impoundment of the Gwash in 1974 to completion of the reservoir in 1978. High infection rates in coarse fish in the feeder streams in 1974 are related to high infection rates in Limnaea pereger. Large eyefluke populations in introduced rainbow trout but not in brown trout confirm their differential resistance. Differences in levels of infection in seine-netted and rod-caught rainbow trout suggest that heavily infected fish could not respond to the fishermens' lures. Reduced numbers of eyeflukes in rainbow trout from 1979 onwards are related to the vast increase in volume of the reservoir in 1977 and decrease in abundance of Limnaea pereger.  相似文献   

12.
Over the past few decades, land-use changes through conversion of global forest cover to exotic plantations is contributing to both habitat and biodiversity loss and species extinctions. To better understand human influences on ecosystem, we use diet composition from introduced Rainbow Trout Oncorhynchus mykiss as indicator of potential changes in the composition of stream-macroinvertebrates due to land use changes from native to exotic vegetation (eucalyptus plantations) in southern Chile. Water quality variables, aquatic macroinvertebrates and Rainbow Trout diet were studied in 12 sites from mountain streams located in two watersheds including one dominated by native riparian vegetation and the other dominated by exotic vegetation. As expected, richness and abundance of macroinvertebrates were clearly higher at sites in native forest than in those with exotic vegetation. Collector-gatherer was the most abundant functional feeding group, but there was no statistical difference in the functional composition between the two watersheds. Differences in in-stream macroinvertebrate availability was more higher correlated with changes in Rainbow Trout diets. Specifically, taxa consumed from the watershed dominated by native forests was higher than from the watershed with exotic vegetation. Additional environmental variables showed statistical differences between watersheds. The exotic vegetation sites had the highest concentrations of dissolved solids, suspended solids, nitrates, chlorides and sulphates. Our findings show that macroinvertebrate assemblage structure and trout diets can be altered by changes in riparian vegetation. The absence of specific macroinvertebrate taxa in streams with exotic vegetation was captured by the composition of trout diets. This suggest that Rainbow Trout diets can be a good biological indicator of land use practices and thus, diet can be used as a rapid and effective tool for evaluate environmental quality. Our findings provide insights about the design of aquatic monitoring programmes to improve detection of anthropogenic impacts in streams in South America and elsewhere.  相似文献   

13.
Fourteen samples of sago pondweed (Potamogeton pectinatus L.) and associated invertebrates were collected every two weeks over a single season of plant growth in a large monospecific pondweed-bed located in Coyote Hills Marsh (Alameda Co., California, USA), using pull-up samplers that collect plants, epiphytic macroinvertebrates, and microcrustaceans throughout the water column. The macro-invertebrate fauna was dominated by insects, primarily chironomids. Semi-aquatic neustonic taxa, including an aphid and a springtail, were common; this is in contrast with most aquatic plant-invertebrate studies, in which neustonic insects are seldom collected because of sampling bias. Over the entire season, P. pectinatus biomass and the densities of four insect taxa (Anopheles spp. mosquitoes, Hydrellia sp. brineflies, Ademon sp. parasitic wasps, and coenagrionid damselflies) were significantly correlated. These correlations resulted from both similar overall phenologies of the plant and each of the insect taxa, and ecological relationships in which P. pectinatus provides either a specialized habitat or food source. macroinvertebrate numbers were highest in mid-summer, when P. pectinatus forms a dense floating canopy; microcrustaceans were more common during plant senescence in early autumn. Individuals of some taxa may be distributed in proportion to plant biomass; this occurred commonly in damselflies, perhaps as a result of territoriality in these nymphs.  相似文献   

14.
The elepaio (Chasiempis sandwichensis) is a monarch flycatcher endemic to the Hawaiian Islands of Kauai, Oahu, and Hawaii. Elepaio vary in morphology among and within islands, and five subspecies are currently recognized. We investigated phylogeography of elepaio using mitochondrial (ND2) and nuclear (LDH) markers and population structure within Hawaii using ND2 and microsatellites. Phylogenetic analyses revealed elepaio on each island formed reciprocally monophyletic groups, with Kauai ancestral to other elepaio. Sequence divergence in ND2 among islands (3.02–2.21%) was similar to that in other avian sibling species. Estimation of divergence times using relaxed molecular clock models indicated elepaio colonized Kauai 2.33 million years ago (95% CI 0.92–3.87 myr), Oahu 0.69 (0.29–1.19) myr ago, and Hawaii 0.49 (0.21–0.84) myr ago. LDH showed less variation than ND2 and was not phylogenetically informative. Analysis of molecular variance within Hawaii showed structure at ND2 (fixation index = 0.31), but microsatellites showed no population structure. Genetic, morphological, and behavioral evidence supports splitting elepaio into three species, one on each island, but does not support recognition of subspecies within Hawaii or other islands. Morphological variation in elepaio has evolved at small geographic scales within islands due to short dispersal distances and steep climatic gradients. Divergence has been limited by lack of dispersal barriers in the extensive forest that once covered each island, but anthropogenic habitat fragmentation and declines in elepaio population size are likely to decrease gene flow and accelerate differentiation, especially on Oahu.  相似文献   

15.
Hybridization with introduced taxa is one of the major threats to the persistence of native biodiversity. The westslope cutthroat trout (Oncorhynchus clarkii lewisi) is found in southeastern British Columbia and southwestern Alberta, Canada, and adjacent areas of Montana, Idaho, and Washington State, USA. Through much of this area, native populations are threatened by hybridization with introduced rainbow trout (O. mykiss). We surveyed 159 samples comprising over 5,000 fish at 10 microsatellite DNA loci to assess the level of admixture between native westslope cutthroat trout (wsct) and introduced rainbow trout in southwestern Alberta. Admixture levels (qwsct of 0 = pure rainbow trout, qwsct of 1.0 = pure westslope cutthroat trout) ranged from <0.01 to 0.99 and averaged from 0.72 to 0.99 across seven drainage areas. Regression tree analyses indicated that water temperature, elevation, distance to the nearest stocking site, and distance to the nearest railway line were significant components of a model that explained 34 % of the variation across sites in qwsct across 58 localities for which habitat variables were available. Partial dependence plots indicated that admixture with rainbow trout increased with increasing water temperature and distance to the nearest railway line, but decreased with increasing elevation and distance from stocking site to sample site. Our results support the hypothesis that westslope cutthroat trout may be less susceptible to hybridization with rainbow trout in colder, higher elevation streams, and illustrate the interaction between abiotic and anthropogenic factors in influencing hybridization between native and introduced taxa.  相似文献   

16.
Conservation and management of endemic species may increasingly involve efforts to prevent hybridization with other species. Native westslope cutthroat trout (Oncorhynchus clarkii lewisi) management in western North America is based largely on admixture estimates with introduced rainbow trout (O. mykiss), with the highest conservation priority given to cutthroat populations that do not exhibit admixture. This study examined the hypothesis that such ancestry quotients are dependent upon the genetic background of reference rainbow trout populations. We used 10 microsatellite loci to estimate admixture within westslope cutthroat trout collected from 39 sites from Alberta, Canada, using three genetically distinct (pairwise FST = 0.100–0.281) rainbow trout genetic backgrounds: a wild (introduced) population from Alberta, two wild (native) populations from British Columbia, and a present-day hatchery broodstock line. Ancestry quotients were significantly impacted by genetic background, whereby the extent of admixture was highest with locally introduced (wild, naturalized) rainbow trout lines and lowest with the hatchery lines. Our results suggest that future studies ought to explore the possibility that local adaptation or drift in introduced rainbow trout populations may contribute to decreased reproductive isolation with geographically proximal cutthroat trout populations.  相似文献   

17.
Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey.  相似文献   

18.
Although morphological plasticity has been observed in a variety of taxa, few experimental studies have compared the relative proportion of morphological variability that is accounted for by environmentally induced plasticity, and how much is because of genetically based differences among populations. We compared the morphology of six rainbow trout (Oncorhynchus mykiss) populations from different ecotypic categories that were raised under flowing vs. standing-water conditions. Our data indicate that both environmental conditions and ecotypic differences account for a significant proportion of variation in morphology. Among ecotype effects, however, accounted for a much larger proportion of morphological variability than environmental conditions. Rainbow trout from stream populations had deeper caudal peduncles, and longer fins than lake populations, and rainbow trout from a piscivorous population had larger mouth and head lengths than all other ecotypes. Environmentally induced differences in morphology were primarily related to differences in mouth and head lengths, as well as fin length. Relative to morphometric differences from natural rainbow trout populations, most characteristics deviated in the same direction in our experimental populations. Our data indicate that morphological differences across rainbow trout populations have a genetic basis and may represent locally adaptive characteristics and highlight the role of ecology in promoting phenotypic divergence.  相似文献   

19.
Winter diet composition of brown trout Salmo trutta was quantified from November to March in 35 temperate groundwater‐dominated streams in south‐eastern Minnesota, U.S.A., in relation to stream physical characteristics including drainage area, channel slope and influence of groundwater on stream thermal regime. Aquatic invertebrates made up the majority of S. trutta diet in all streams and sampling periods and individual S. trutta typically had consumed 30 or more prey items at each sampling event. Differences in diet composition were greater among streams than between sampling periods within a stream, with Gammarus spp., Brachycentrus spp., Glossosoma spp., Chironomidae and Physella spp. the most common taxa. Landscape‐scale stream characteristics were not significantly associated with S. trutta consumption or diet composition. Winter was period of significant activity in groundwater‐dominated streams, as S. trutta fed on a variety of aquatic prey taxa highlighting the importance of winter base‐flow in moderating S. trutta populations in seasonally cold catchments.  相似文献   

20.
The rust fungusGymnoconia nitensinfects blackberry (Rubus argutus) systemically in regions of the continental United States, producing bright yellow–orange masses of spores on newly developing floricanes during springtime. In tests to determine the suitability of this rust as a biological control agent forR. penetransin Hawaii, a species now thought to be conspecific withR. argutus,rooted cuttings of the Hawaiian plants were grown at North Carolina State University, inoculated, and observed. Other introduced weedyRubusspp. in Hawaii, includingR. ellipticus, R. rosifolius,andR. glaucus,as well as the two endemic speciesR. hawaiensisandR. macraei,also were inoculated. No species ofRubusare of commercial importance in Hawaii, but the protection of the native species, of whichR. macraeiis rare, was of utmost concern. The native Hawaiian species did not survive well in North Carolina in this study, however. Later availability of a plant pathogen containment laboratory in Hawaii enabled similar tests to be conducted at that facility. In addition to the above species,R. spectabilis(salmonberry), a species native to the Pacific Northwest with which the HawaiianRubusspp. are thought to share a common ancestor, was inoculated in Hawaii. Infection withG. nitensunder natural field conditions becomes apparent only when sporulation occurs on floricanes the second year following infection. However, experimental inoculation led to early responses of chlorotic leaf flecking and puckering, leaf and stem contortion, and stem gall formation, indicating the sensitivity ofR. penetrans(=R. argutus),R. hawaiensis,andR. macraeito this rust. Apparent systemic infection also resulted in sporulation on one plant ofR. macraei.Ability to attack the endemic species suggests thatG. nitenswould not be suitable for release in Hawaii as a biological control agent, at least on the islands with populations of the native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号