首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
为了解植株间的菌丝网络(common mycorrhizal networks,CMNs)的功能,对丛枝菌根菌丝网络在紫花苜蓿(Medicago sativa)机械损伤信号传递中的作用进行了研究.结果表明,与经机械损伤处理的供体植株有CMNs连接的受体植株叶片中挥发物的数量和种类都显著高于无CMNs连接的植株;供体植株...  相似文献   

4.
GSK3/shaggy-like protein kinases have been shown to play diverse roles in development and signal transduction pathways in various organisms. An Arabidopsis homologue of GSK3/shaggy-like kinase, AtGSK1, has been shown to be involved in NaCl stress responses. In order to further clarify the role of AtGSK1 in NaCl stress responses in plants, we generated transgenic Arabidopsis plants that over-expressed AtGSK1 mRNA. These plants showed enhanced resistance to NaCl stress when assayed either as whole plants or by measurement of root growth on NaCl plates. In addition, AtGSK1 transgenic plants in the absence of NaCl stress showed phenotypic changes, such as accumulation of anthocyanin, that were similar to those observed in wild-type plants under NaCl stress. Transgenic plants accumulated 30-50% more Na+ than did wild-type plants when subjected to NaCl stress, and Ca2+ content was increased by 15-30% in the transgenic plants regardless of the NaCl stress level. Northern blotting revealed that AtGSK1 over-expression induced expression of the NaCl stress-responsive genes AtCP1, RD29A and CHS1 in the absence of NaCl stress. In addition, AtCBL1 and AtCP1 were super-induced in the NaCl-stressed transgenic plants. Taken together, these results suggest that AtGSK1 is involved in the signal transduction pathway(s) of NaCl stress responses in Arabidopsis.  相似文献   

5.
The ability of vegetative plant tissues to survive desiccation is an uncommon trait, although plants that are able to do this represent all major classes of plants. Two classes of vegetative desiccation-tolerant plants exist; those that are modified desiccation-tolerant and can only survive desiccation if drying rates are slow, and those that are fully desiccation-tolerant and can survive even rapid drying rates. Investigations into the cellular level responses of these two types of plants has lead to an understanding of the underlying mechanisms of desiccation-tolerance. The following proposed mechanisms for desiccation-tolerance are presented. Modified desiccation-tolerant plants utilize inducible cellular protection systems supplemented in part by a minor rehydration induced repair component. Fully desiccation-tolerant plants utilize a rehydration induced repair system that is complemented by a constitutive protection component. This minireview explores the evidence for these proposed mechanisms in an attempt to lay the theoretical ground work for future work in this area.  相似文献   

6.
7.
DNA photolyases harvest light energy to repair genomic lesions induced by UV irradiation, whereas cryptochromes, presumptive descendants of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Orthologs of 6-4 photolyases are predicted to exist in the genomes of some filamentous fungi, but their function is unknown. In this study, we identified two putative photolyase-encoding genes in the maize foliar pathogen Cercospora zeae-maydis: CPD1, an ortholog of cyclobutane pyrimidine dimer (CPD) photolyases described in other filamentous fungi, and PHL1, a cryptochrome/6-4 photolyase-like gene. Strains disrupted in PHL1 (Deltaphl1) displayed abnormalities in development and secondary metabolism but were unaffected in their ability to infect maize leaves. After exposure to lethal doses of UV light, conidia of Deltaphl1 strains were abolished in photoreactivation and displayed reduced expression of CPD1, as well as RAD2 and RVB2, orthologs of genes involved in nucleotide excision and chromatin remodeling during DNA damage repair. This study presents the first characterization of a 6-4 photolyase ortholog in a filamentous fungus and provides evidence that PHL1 regulates responses to UV irradiation.  相似文献   

8.
The whole‐plant activation of defense responses to wounding and herbivory requires systemic signaling in which jasmonates (JAs) play a pivotal role. To examine the nature of the slower cell‐nonautonomous as compared to the rapid cell‐autonomous signal in mediating systemic defenses in Nicotiana attenuata, reciprocal stem grafting‐experiments were used with plants silenced for the JA biosynthetic gene ALLENE OXIDE CYCLASE (irAOC) or plants transformed to create JA sinks by ectopically expressing Arabidopsis JA‐O‐methyltransferase (ovJMT). JA‐impaired irAOC plants were defective in the cell‐nonautonomous signaling pathway but not in JA transport. Conversely, ovJMT plants abrogated the production of a graft‐transmissible JA signal. Both genotypes displayed unaltered cell‐autonomous signaling. Defense responses (17‐hydroxygeranyllinalool diterpene glycosides, nicotine, and proteinase inhibitors) and metabolite profiles were differently induced in irAOC and ovJMT scions in response to graft‐transmissible signals from elicited wild type stocks. The performance of Manduca sexta larvae on the scions of different graft combinations was consistent with the patterns of systemic defense metabolite elicitations. Taken together, we conclude that JA and possibly MeJA, but not JA‐Ile, either directly functions as a long‐distance transmissible signal or indirectly interacts with long distance signal(s) to activate systemic defense responses.  相似文献   

9.
In their defence against pathogens, herbivorous insects, and mites, plants employ many induced responses. One of these responses is the induced emission of volatiles upon herbivory. These volatiles can guide predators or parasitoids to their herbivorous prey, and thus benefit both plant and carnivore. This use of carnivores by plants is termed indirect defence and has been reported for many plant species, including elm, pine, maize, Lima bean, cotton, cucumber, tobacco, tomato, cabbage, and Arabidopsis thaliana. Herbivory activates an intricate signalling web and finally results in defence responses such as increased production of volatiles. Although several components of this signalling web are known (for example the plant hormones jasmonic acid, salicylic acid, and ethylene), our understanding of how these components interact and how other components are involved is still limited. Here we review the knowledge on elicitation and signal transduction of herbivory-induced volatile production. Additionally, we discuss how use of the model plant Arabidopsis thaliana can enhance our understanding of signal transduction in indirect defence and how cross-talk and trade-offs with signal transduction in direct defence against herbivores and pathogens influences plant responses.  相似文献   

10.
Plants evolve a strategy to survive the attacks of potential pathogens by inducing the microbial signal molecules. In this study, plant defence responses were induced in four different varieties of Arachis hypogaea (J‐11, GG‐20, TG‐26 and TPG41) using the fungal components of Sclerotium rolfsii in the form of fungal culture filtrate (FCF) and mycelial cell wall (MCW), and the levels of defence‐related signal molecule salicylic acid (SA), marker enzymes such as peroxidase (POX), phenylalanine ammonia lyase (PAL), β‐1,3‐glucanase and lignin were determined. There was a substantial fold increase in POX, PAL, SA, β‐1,3‐glucanase and lignin content in FCF‐ and MCW‐treated plants of all varieties of groundnut when compared to that of control plants. The enzyme activities were much higher in FCF‐treated plants than in MCW‐treated plants. The increase in fold activity of enzymes and signal molecule varied between different varieties. These results indicate that the use of fungal components (FCF and MCW) had successfully induced systemic resistance in the four different varieties of groundnut plants against Sclerotium rolfsii.  相似文献   

11.
Induced resistance in rice against insects   总被引:1,自引:0,他引:1  
Vaccinations are the mainstay of western preventive medicine, and they have been used to protect some crops against disease and insect pests. We consider rice as a model for protection using induced resistance since it is one of the most important staple crops and there have been significant new developments in: cross-resistance among rice insects, chemical pathways involved in induced resistance, sequencing the rice genome and expression of genes conferring resistance against rice insect pests. Insect attack has been found to cause lesions that kill planthopper eggs and early stages of gall midges. Damaged plants released volatiles that made them less likely to be chosen by planthoppers and more attractive to parasitoids. Chemical elicitors have been developed for dicotyledonous plants and these can induce resistance in rice, although rice does not fit models developed to explain signalling in dicots. For example, salicylic acid did not increase in rice after infection by pathogens and did not appear to be the mobile signal for induced resistance against pathogens although it was involved in induced responses to phloem-feeding insects. Jasmonic acid acted as a signal in some induced responses to pathogens as well as chewing insects. Many of the genes associated with induced resistance in rice have recently been mapped, and techniques are being developed to incorporate them into the genome of cultivated varieties. Attempts to control insect pests of rice will affect interactions with pathogens, predators and parasites, and other organisms in this agroecosystem.  相似文献   

12.
Analogous to the opsin-based receptors in animals, plants contain a diverse and elaborate set of photoreceptors to perceive a much wider spectrum of light and adapt to varying light conditions. Cryptochromes (CRYs), the blue/UV-A light sensing receptors, represent one such class of photoreceptors found ubiquitously in plants. Although structurally similar to DNA photolyases which could repair UV-induced DNA damage, photoactivated CRYs, instead, initiate signal transduction pathways, which lead to gene expression changes and eventually more overt photomorphogenic responses. Apart from the well-established roles of CRYs in regulating seedling de-etiolation, flowering time, and circadian clock, recent reports have highlighted their roles in controlling other aspects of plant development as well. This review attempts to describe the novel/atypical roles of CRYs that have emerged in the past few years, and also present an account of the various signaling components involved in CRY signal transduction pathway.  相似文献   

13.
Gravity resistance is a response that enables plants to develop against the gravitational force. Hypergravity conditions produced by centrifugation have been used to analyze the mechanisms of gravity resistance responses. Under hypergravity conditions, plants construct short and thick shoots and increase cell wall rigidity for resisting the gravitational force. Hypergravity caused a decrease in the percentage of cells with transverse microtubules, and an increase in that with longitudinal microtubules. Such a prompt reorientation of cortical microtubules is involved in the changes in morphology of shoots by gravity. Hypergravity increased cell wall rigidity by increasing the molecular mass of xyloglucans via suppression of xyloglucan breakdown as well as by the thickening of cell walls. Blocker reagents of mechanoreceptors nullified the above-mentioned changes induced by hypergravity. Gravity resistance responses were brought about normally in mutants deprived of gravitropism. This result indicates that the graviperception mechanism in gravity resistance is independent of that in gravitropism. Gravity resistance responses were brought about independently of the direction of gravistimuli, but the responses disappeared in the presence of blockers of mechanoreceptors. Thus, in gravity responses, plants may perceive the gravitational force independently of the direction of stimuli by mechanoreceptors on the plasma membrane, and may utilize the signal to construct a tough body.  相似文献   

14.
Stress responses are largely conserved in eukaryotic cells, but with plants having certain distinctive reactions to specific stresses, e.g. the induction of pathogenesis-related proteins. General responses to stress involve signaling stress detection via the redox system, checkpoints arresting the cell cycle and DNA repair processes stimulated in response to DNA damage. Specific responses to stress include the induction of protective metabolites, such as betaines, and protective proteins, for example, heat shock proteins. Chemical signals, e.g. reactive oxygen species, Ca2+ and plant hormones, acting through signal transduction cascades activate genomic re-programming. Genome plasticity in plants allows adaptation to environmental conditions and includes genomic or epigenetic changes (histone acetylation, methylation, chromatin remodeling etc.) and possibly directed mutation. In plants, recent research has indicated that intricate stress response mechanisms and `cross talk' between stress responses exist. Here, changes in the plant genome and in genomic expression in development and as a response to environmental stress are reviewed as background to a discussion of the basis of aberrant genomic expression in vitro. Markers are discussed which may be used to characterize the stress exposure of in vitro tissues.  相似文献   

15.
16.
Shoresh M  Gal-On A  Leibman D  Chet I 《Plant physiology》2006,142(3):1169-1179
The fungal biocontrol agent Trichoderma asperellum has been recently shown to induce systemic resistance in plants through a mechanism that employs jasmonic acid and ethylene signal transduction pathways. Mitogen-activated protein kinase (MAPK) proteins have been implicated in the signal transduction of a wide variety of plant stress responses. Here we report the identification and characterization of a Trichoderma-induced MAPK (TIPK) gene function in cucumber (Cucumis sativus). Similar to its homologs, wound-induced protein kinase, MPK3, and MPK3a, TIPK is also induced by wounding. Normally, preinoculation of roots with Trichoderma activates plant defense mechanisms, which result in resistance to the leaf pathogen Pseudomonas syringae pv lachrymans. We used a unique attenuated virus vector, Zucchini yellow mosaic virus (ZYMV-AGII), to overexpress TIPK protein and antisense (AS) RNA. Plants overexpressing TIPK were more resistant to pathogenic bacterial attack than control plants, even in the absence of Trichoderma preinoculation. On the other hand, plants expressing TIPK-AS revealed increased sensitivity to pathogen attack. Moreover, Trichoderma preinoculation could not protect these AS plants against subsequent pathogen attack. We therefore demonstrate that Trichoderma exerts its protective effect on plants through activation of the TIPK gene, a MAPK that is involved in signal transduction pathways of defense responses.  相似文献   

17.
Jasmonic acid (JA) and salicylic acid (SA) have both been implicated as important signal molecules mediating induced defenses of Nicotiana tabacum L. against herbivores and pathogens. Since the application of SA to a wound site can inhibit both wound-induced JA and a defense response that it elicits, namely nicotine production, we determined if tobacco mosaic virus (TMV) inoculation, with its associated endogenous systemic increase in SA, reduces a plant's ability to increase JA and nicotine levels in response to mechanical damage, and evaluated the consequences of these interactions for the amount of tissue removed by a nicotine-tolerant herbivore, Manduca sexta. Additionally, we determined whether the release of volatile methyl salicylic acid (MeSA) from inoculated plants can reduce wound-induced JA and nicotine responses in uninoculated plants sharing the same chamber. The TMV-inoculated plants, though capable of inducing nicotine normally in response to methyl jasmonate applications, had attenuated wound-induced JA and nicotine responses. Moreover, larvae consumed 1.7- to 2.7-times more leaf tissue from TMV-inoculated plants than from mock-inoculated plants. Uninoculated plants growing in chambers downwind of either TMV-inoculated plants or vials releasing MeSA at 83- to 643-times the amount TMV-inoculated plants release, exhibited normal wound-induced responses. We conclude that tobacco plants, when inoculated with TMV, are unable to elicit normal wound responses, due likely to the inhibition of JA production by the systemic increase in SA induced by virus-inoculation. The release of volatile MeSA from inoculated plants is not sufficient to influence the wound-induced responses of neighboring plants. Received: 6 January 1999 / Accepted: 11 January 1999  相似文献   

18.
The responses to photoinhibition of photosynthesis at low temperature and subsequent recovery were examined in Arabidopsis thaliana (ecotype Columbia) developed at 4°C cold-acclimating conditions, 23°C non-acclimating conditions and for non-acclimated plants shifted to 4°C (cold-shifted). These responses were determined in planta using Chl fluorescence imaging. We show that cold acclimation results in an increased tolerance to photoinhibition in comparison with non-acclimated plants and that growth and development at low temperature is essential for this to occur. Cold-shifted plants were not as tolerant as the cold-acclimated plants. In addition, we demonstrate this tolerance is as a result of growth under high PSII excitation pressure, that can be modulated by growth temperature or growth irradiance. Cold-acclimated and cold-shifted plants fully recover from photoinhibition in the dark, whereas non-acclimated plants show reduced levels of recovery and demonstrate a requirement for light. The role of the PSII repair cycle, PSII quenching centres, and the use of Chl fluorescence imaging to monitor photoinhibitory responses in planta are discussed.  相似文献   

19.
Many plants employ induced responses against generalist herbivores. Specialist herbivores, however, may employ several mechanisms to overcome the negative effects of induced plant defenses. Here we test how the behavior and development of specialist Manduca sexta larvae are affected by induced responses in their natural host plant Nicotiana attenuata. On a spatial scale relevant to both the plant and the herbivore, we first determined how methyl jasmonate (MeJA)-induced responses, such as increased nicotine production, affect the tendency of larvae to leave induced plants. When larvae were allowed to move between two plants planted in one pot, they left an MeJA-treated plant faster than a control plant. When both plants in the pot were MeJA-treated, the larvae developed more slowly than when both plants were uninduced, or when the larvae had the opportunity to move to an uninduced neighbor. The sooner larvae moved from an MeJA-treated plant to an untreated neighbor, the larger the body mass they attained. This demonstrates that M. sexta larvae can compensate behaviorally for the deleterious effects of induced plant responses. These effects were observed in plants grown under both low and high N supply rates, though the effects were more pronounced under high N. To examine the consequences of the timing and the direction of the host plant switching behavior for larval development, neonate larvae were fed leaves excised from induced and uninduced plants. Larvae confined to MeJA-treated leaves had higher mortality rates and grew slower than larvae fed only control leaves. This demonstrates that MeJA-induced responses decrease growth and development of specialist herbivores that do not have the behavioral option of moving to an uninduced plant. The sooner the larvae were switched to MeJA-treated leaves, the slower their development compared to larvae fed only uninduced leaves. In contrast, the sooner larvae fed MeJA-treated leaves were switched to control leaves, the faster they developed. Again the effects of MeJA treatment were stronger in plants grown under high N supply. We propose that induced plants growing in close competition with an uninduced conspecific may offset the fitness costs of these induced responses and perhaps obtain a fitness benefit by motivating herbivores to move to their neighboring competitors. Received: 25 March 1999 / Accepted: 8 October 1999  相似文献   

20.
Rare earth elements (REEs) have been widely used to increase accumulation of biomass and secondary metabolites in medicinal plants in China. However, very few studies have investigated how REEs mediate secondary metabolism synthesis in medicinal plants. Lanthanum (La), an important REE, is known to improve the accumulation of secondary metabolites in medicinal plants and is widely distributed in China. However, few studies have evaluated the signal transduction leading to La-induced secondary metabolism in medicinal plants. In this study, LaCl(3) treatment-induced multiple responses in Scutellaria baicalensis seedlings, including the rapid generation of jasmonic acid (JA), sequentially followed by the enhancement of baicalin production. Direct application of JA also promoted the synthesis of baicalin in the absence of LaCl(3). LaCl(3)-induced baicalin synthesis was blocked by two different JA synthesis inhibitors. Our results showed that JA acts as a signal component within the signaling system leading to La-induced baicalin synthesis in S. baicalensis seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号