首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
荧光原位杂交技术及其在微生物生态学中的应用   总被引:7,自引:0,他引:7  
呼庆  齐鸿雁  张洪勋 《生态学报》2004,24(5):1048-1054
综述了荧光原位杂交技术 (fluorescence in situ hybridization FISH)在微生物生态学领域的各种应用 ,同时就其发展过程、原理及种类做了介绍  相似文献   

2.
As a technique allowing simultaneous visualization, identification, enumeration and localization of individual microbial cells, fluorescence in situ hybridization (FISH) is useful for many applications in all fields of microbiology. FISH not only allows the detection of culturable microorganisms, but also of yet-to-be cultured (so-called unculturable) organisms, and can therefore help in understanding complex microbial communities. In this review, methodological aspects, as well as problems and pitfalls of FISH are discussed in an examination of past, present and future applications.  相似文献   

3.
《Process Biochemistry》2007,42(2):119-133
Identification of microorganisms by conventional methods requires the isolation of pure cultures followed by laborious characterization experiments. These procedures are therefore inadequate for study of the biodiversity of a natural or engineered ecosystem. A new set of molecular techniques developed during the 1990s revolutionized microbial ecology research. Among these techniques, cloning and the creation of a gene library, denaturant gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization with DNA probes (FISH) stand out. Cloning provides very precise taxonomical information, but is time consuming and requires specialized personnel and so its introduction in wastewater treatment has been slow. DGGE is a rapid and simple method that provides characteristic band patterns for different samples, allowing quick sample profiling, while retaining the possibility of a more thorough genetic analysis by sequencing of particular bands. FISH makes possible to identify microorganisms at any desired taxonomical level, depending on the specificity of the probe used. It is the only quantitative molecular biology technique, although quantification is either complex or tedious and subjective. Combination with a confocal laser-scanning microscope allows the visualization of three-dimensional microbial structures (granules, biofilms). The methods discussed have deepened our understanding of the microbiology of biological wastewater treatment. PCR-based methods (cloning and DGGE) have proved suitable for identifying the microorganisms that form the sludge. Both DGGE and FISH have been extensively employed. FISH is currently being used for elucidation of the composition, quantification and distribution of different bacterial groups in granules and biofilms, as well as their structure and architecture.  相似文献   

4.
Combinations of microscopy and molecular techniques to detect, identify and characterize microorganisms in environmental and medical samples are widely used in microbial ecology and biofilm research. The scope of these methods, which include fluorescence in situ hybridization (FISH) with rRNA-targeted probes, is extended by digital image analysis routines that extract from micrographs important quantitative data. Here we introduce daime (digital image analysis in microbial ecology), a new computer program integrating 2-D and 3-D image analysis and visualization functionality, which has previously not been available in a single open-source software package. For example, daime automatically finds 2-D and 3-D objects in images and confocal image stacks, and offers special functions for quantifying microbial populations and evaluating new FISH probes. A novel feature is the quantification of spatial localization patterns of microorganisms in complex samples like biofilms. In combination with '3D-FISH', which preserves the 3-D structure of samples, this stereological technique was applied in a proof of principle experiment on activated sludge and provided quantitative evidence that functionally linked ammonia and nitrite oxidizers cluster together in their habitat. This image analysis method complements recent molecular techniques for analysing structure-function relationships in microbial communities and will help to characterize symbiotic interactions among microorganisms.  相似文献   

5.
Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.  相似文献   

6.
FISH技术在微生物生态学中的研究及进展   总被引:3,自引:0,他引:3  
分子生物学技术在微生物生态学研究中具有灵敏、精确和快速的优势,但不能提供微生物的形态学、数量性状、空间分布等信息。荧光原位杂交技术结合了分子生物学的精确性和显微镜的可视性信息,可以在自然生境中监测和鉴定不同的微生物个体,尤其是对难培养和未被培养的微生物进行检测。荧光原位杂交技术被广泛用于微生物群落结构诊断和评价,现已成为微生物分子生态学研究中的热点技术。对荧光原位杂交技术的发展和在微生物分子生态学中的应用进行了综述,探讨了该技术应用中存在的问题和发展前景。  相似文献   

7.
以16S rRNA 为靶序列的寡核苷酸探针荧光原位杂交技术已广泛应用于分析复杂环境中的微生物群落构成,包括监测和鉴定病原微生物以及未被培养微生物.通过对临床样品中微生物细胞的检测能提供微生物在人体中的种类、数量和空间分布等信息.其结果快速准确,较之传统的病原微生物诊断方法具有明显的优越性,在临床应用中有广泛的前景.  相似文献   

8.
Development of fast and accurate methods for monitoring environmental microbial diversity is one of the great challenges in microbiology today. Oligonucleotide probes based on 16S rRNA sequences are widely used to identify bacteria in the environment. However, the successful development of a chip of immobilized 16S rRNA probes for identification of large numbers of species in a single hybridization step has not yet been reported. In reverse sample genome probing (RSGP), labelled total community DNA is hybridized to arrays in which genomes of cultured microorganisms are spotted on a solid support in denatured form. This method has provided useful information on changes in composition of the cultured component of microbial communities in oil fields, the soil rhizhosphere, hydrocarbon-contaminated soils and acid mine drainage sites. Applications and limitations of the method, as well as the prospects of extending RSGP to cover also the as yet uncultured component of microbial communities, are evaluated.  相似文献   

9.
10.
生态工程领域微生物菌剂研究进展   总被引:14,自引:0,他引:14  
文娅  赵国柱  周传斌  曹爱新 《生态学报》2011,31(20):6287-6294
阐述了微生物菌剂在生态工程领域的应用范围、效果和国内外的研究状况,总结了目前微生物菌剂研制中菌种的选育方法和常用的几类菌,并通过系统举例介绍了乳酸菌、酵母菌、光合细菌、芽孢杆菌这些常用菌种在污染物处理方面的效果及在废水处理生态工程方面的相关研究进展。同时,阐明了微生物混合培养技术在复合菌剂研究中的重要性,对微生物菌剂的作用机理进行了探讨,指出了目前关于微生物菌剂的研究大多只是集中于应用效果方面,而对作用机理研究得不够深入,以及复合菌系中微生物相互作用和影响的复杂性,并对此提出了一些建议。最后,对微生物菌剂的应用前景进行了展望。  相似文献   

11.
《Biotechnology advances》2019,37(6):107395
Plant oil based industrial oleochemistry leads to a large side stream of crude glycerol, which offers itself as a low price carbon source for microbial chemical production. Compared to sugar, glycerol is more reduced and less microorganisms are able to use it as carbon source. An interesting feature of glycerol conversion is that many organisms cannot use it as carbon source at all, but they readily use it as electron sink under anaerobic conditions. In any case the number of pathways by which glycerol enters the microbial metabolism is quite limited. Having said this, an interesting variety of products of industrial relevance is accumulated by naturally occurring microorganisms which can use glycerol. These chemicals range from fuels and solvents to polymer precursors up to food additives. The limited number of metabolic pathways and the manageable amount of products allow to highlight the importance of tapping the outstanding resource of biodiversity for industrial purposes. The interplay of microbial biodiversity, metabolic engineering and bioprocess engineering is key for economic success in industrial microbiology. In this article we shed light on the biodiversity of naturally glycerol consuming microorganisms and their impact and importance on microbial chemical production.  相似文献   

12.
Aquaculture, especially shrimp farming, has played a major role in the growth of Thailand's economy in recent years, as well as in many South East Asian countries. However, the nutrient discharges from these activities have caused adverse impacts on the quality of the receiving waterways. In particular nitrogenous compounds, which may accumulate in aquaculture ponds, can be toxic to aquatic animals and cause environmental problems such as eutrophication. The mineralization process is well known, but certain aspects of the microbial ecology of nitrifiers, the microorganisms that convert ammonia to nitrate, are poorly understood. A previously reported enrichment of nitrifying bacteria (ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) from a shrimp farm inoculated in a sequencing batch reactor (SBR) was studied by molecular methods. The initial identification and partial quantification of the nitrifying bacteria (AOB and NOB) were carried out by fluorescence in situ hybridization (FISH) using previously published 16S rRNA-targeting oligonucleotide probes. The two dominant bacterial groups detected by FISH were from the Cytophaga-Flavobacterium-Bacteroides and Proteobacteria (beta subdivision) phyla. Published FISH probes for Nitrobacter and Nitrospira did not hybridize to any of the bacterial cells. Therefore it is likely that new communities of NOBs, differing from previously reported ones, exist in the enrichments. Molecular genetic techniques (cloning, sequencing, and phylogenetic analysis) targeting the 16S rRNA genes from the nitrifying enrichments were performed to identify putative AOBs and NOBs.  相似文献   

13.
微生物群落多样性是微生物生态学和环境学研究的重点之一。分子生物学方法应用于微生物群落结构分析使得对环境样品中占大多数的不可培养微生物的研究成为了可能。由于功能上高度保守,序列上的不同位置具有不同的变异速率,核糖体RNA(rRNA)是目前在微生物分子生态学上最为有用以及应用最广泛的分子标记,通过rRNA序列比对,可以分析不同分类水平的系统发育关系。元基因组学研究方法通过对环境样品中的各种微生物群落的总的基因组进行分析,充分展示了环境微生物代谢途径,极大地扩展了对微生物的认识。快速发展的高通量测序极大地促进了各项微生物生态学技术的发展,带来了新的突破。  相似文献   

14.
In situ detection of microorganisms by fluorescence in situ hybridization (FISH) is a powerful tool for environmental microbiology, but analyses can be hampered by low rRNA content in target organisms, especially in oligotrophic environments. Here, we present a non‐enzymatic, hybridization chain reaction (HCR)‐based signal amplified in situ whole‐cell detection technique (in situ DNA‐HCR). The components of the amplification buffer were optimized to polymerize DNA amplifier probes for in situ DNA‐HCR. In situ hybridization of initiator probes followed by signal amplification via HCR produced bright signals with high specificity and probe permeation into cells. The detection rates for Bacteria in a seawater sample and Archaea in anaerobic sludge samples were comparable with or greater than those obtained by catalyzed reporter deposition (CARD)‐FISH or standard FISH. Detection of multiple organisms (Bacteria, Archaea and Methanosaetaceae) in an anaerobic sludge sample was achieved by simultaneous in situ DNA‐HCR. In summary, in situ DNA‐HCR is a simple and easy technique for detecting single microbial cells and enhancing understanding of the ecology and behaviour of environmental microorganisms in situ.  相似文献   

15.
Visualization of microorganisms in soils and sediments using fluorescent dyes is a common method in microbial ecology studies, but is often hampered by strong nonspecific background fluorescence that can mask genuine cellular signals. The cyanine nucleic acid binding dyes TO-PRO-3 and TOTO-3 iodide enabled a clear detection of microbial cells in a mineral soil, while nonspecific background was greatly reduced compared with commonly used dyes. When used as counterstains for fluorescence in situ hybridization (FISH), both cyanine dyes allowed identification of microbial cells despite strong background from nonspecifically bound probes. TO-PRO-3 and TOTO-3 are easy to use and represent superior alternatives for detecting microorganisms in soil environments.  相似文献   

16.
Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications.  相似文献   

17.
口腔微生物是人体微生物组的重要组成部分,其群落组成丰富且独特。现有研究显示,口腔微生物与龋病、牙周炎等口腔健康问题有直接的联系,因而具有重要的研究价值。随着高通量测序技术的发展,人们对口腔中未培养微生物多样性的认识不断加深,这进一步催生对微生物分离培养技术需求的增加。为此,本文将围绕口腔未培养微生物及其分离培养策略的研究进展,首先介绍口腔中未培养微生物的研究现状;其次分析口腔微生物分离培养中可能的限制因素;最后综述微生物分离培养技术发展及其在口腔未培养微生物研究中的应用。全文旨在为口腔未培养微生物的分离培养提供思路和技术参考。  相似文献   

18.
Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.  相似文献   

19.
超高分辨率显微镜成像技术与同位素示踪技术相结合的纳米二次离子质谱技术(NanoSIMS)具有较高的灵敏度和离子传输效率、极高的质量分辨率和空间分辨率(< 50 nm),代表着当今离子探针成像技术的最高水平.利用稳定性或者放射性同位素在原位或者微宇宙条件下示踪目标微生物,然后将样品进行固定、脱水、树脂包埋或者导电镀膜处理,制备成可供二次离子质谱分析的薄片,进一步通过NanoSIMS成像分析,不仅能够在单细胞水平上提供微生物的生理生态特征信息,而且能够准确识别复杂环境样品中的代谢活跃的微生物细胞及其系统分类信息,对于认识微生物介导的元素生物地球化学循环机制具有重要意义.介绍了纳米二次离子质谱技术的工作原理和技术路线,及其与同位素示踪技术、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、荧光原位杂交技术(FISH)、催化报告沉积荧光原位杂交技术(CARD-FISH)、卤素原位杂交技术(Halogen In Situ Hybridization,HISH)等联合使用在微生物生态学研究方面的应用.  相似文献   

20.
The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号