首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The thermal inactivation characteristics of Bacillus subtilis A spores suspended in skim milk with the use of large-scale ultrahigh temperature (UHT) processing equipment were investigated in terms of survival as measured with two plating media. Data on survival immediately after UHT treatments were recorded in temperature-survivor curves, time-survivor curves, and decimal reduction time (DRT) curves. The temperature-survivor curves emphasized that inactivation is accelerated more by increases in the treatment temperature than by increases in the exposure time. Time-survivor curves and DRT curves were not linear. Generally, exceedingly concave time-survivor curves were observed with the standard plating medium; however, only slightly concave curves were observed when CaCl(2) and sodium dipicolinate were added to the medium. For a given UHT sample, larger D values were obtained by use of the medium with the added CaCl(2) and sodium dipicolinate. The DRT curves of all data were concave and appeared to have two discrete slopes (z(D) values). The z(D) values observed in the upper UHT range (above 260 F; 127 C) were twice those observed at lower test temperatures.  相似文献   

2.
Bacillus subtilis A spores were injured by exposure to heat treatments of 110 to 132 C. Injury was demonstrated by the inability to form colonies on fortified nutrient agar (FNA) unless the medium was supplemented with CaCl(2) and Na(2) dipicolinate (CNA). A preliminary heat treatment fully heat-activated the spores, was not lethal, and did not prevent injury by subsequent secondary heat treatment. Exposure of heat-activated spores to 122 C reduced germination in FNA. The primary germination agents in FNA were identified, and a defined germination medium of glucose, NaCl, l-alanine, and sodium phosphate (GNAP) was developed. Germination of heat-activated spores in GNAP was equivalent to germination in FNA. Injury measured by colony formation on FNA and CNA was correlated to injury measured by reduced germination in both FNA and GNAP. Inactivation of the FNA and GNAP germination systems by secondary treatment exhibited similar kinetics. Therefore, injury expressed as the inability to form colonies on FNA involved alteration of the GNAP germination system.  相似文献   

3.
The inactivation of Clostridium perfringens type A spores (three strains of different heat resistances) at ultrahigh temperatures was studied. Aqueous spore suspensions were heated at 85 to 135 C by the capillary tube method. When survivors were enumerated on the standard plating medium, the spores appeared to have been rapidly inactivated at temperatures above 100 C. The addition of lysozyme to the plating medium did not affect the recovery of spores surviving the early stages of heating, but lysozyme was required for maximal recovery of spores surviving extended heat treatments. The percentage of survivors requiring lysozyme for colony formation increased greatly with longer exposure times or increasing treatment temperature. Time-survivor curves indicated that each spore suspension was heterogeneous with respect to the heat resistance of spore outgrowth system or in the sensitivity of the spores to lysozyme. Recovery of survivors on the lysozyme containing medium revealed greater heat resistance for one strain than has been reported for spores of many mesophilic aerobes and anaerobes. The spores of all three strains were more resistant to heat inactivation when suspended in phosphate buffer, but a greater percentage of the survivors required lysozyme for colony formation.  相似文献   

4.
Spores ofBacillus subtilis A were produced at different temperatures (23°–49°C) and examined for a number of sporal characteristics. Spore heat resistance increased with sporulation temperature to 45°C, with spores grown at 49°C showing a dramatic reduction in resistance. Spore crops showed biphasic thermal death curves whether enumerated on germination medium with or without calcium dipicolinate. This strain produces both rough and smooth variants. Of the spores produced at 23°C, 99% were rough, had a density of 1.305, and an average core/core + cortex volume ratio of 0.1838. At 49°C, 99% were smooth, had a density of 1.275, and an average volume ratio of 0.3098. Between these temperatures both spore types were produced. There appeared to be no direct correlation with sporulation temperature, heat resistance, and dipicolinate content. There was an increase in both the magnesium and calcium contents to 45°C with a dramatic reduction at 49°C. The 1.305 density spores had higher calcium and dipicolinate contents than the 1.275 spores, although both spore types showed biphasic thermal death curves. The mechanisms involved in determining which spore type (rough/smooth) is produced at a specific growth temperature is unknown.Florida Agricultural Experiment Station Journal Series Number R-00312.  相似文献   

5.
Spores of Bacillus subtilis NCTC 8236 were treated with glutaraldehyde, Lugol's iodine, polyvinylpyrrolidone-iodine (PVP-I), sodium hypochlorite or sodium dichloroisocyanurate (NaDCC). After exposure survivors were enumerated on nutrient agar containing potential revival agents (subtilisin, lysozyme, calcium dipicolinate, calcium lactate). Of these, only calcium lactate had any significant enhancing effect and then only with iodine-treated spores. Calcium lactate (9 mmol 1−1) in nutrient broth enhanced the rate and extent of germination of iodine-treated spores but not of spores previously subjected to glutaraldehyde, hypochlorite or NaDCC.  相似文献   

6.
Experiments were conducted to gain a better understanding of the mechanism by which sodium chloride, sodium nitrate, and sodium nitrite supplement the action of heat in preserving canned cured meat products. Heated spores of putrefactive anaerobe 3679h were less tolerant of all three curing agents in the outgrowth medium than were unheated spores. When the curing agents were added to the heating menstruum, but not to the outgrowth medium, sodium chloride and sodium nitrate tended to protect the spores against heat injury, but sodium nitrite did not. When the spores were both heated and cultured in the presence of the curing agents: (i) nitrate and salt increased the apparent heat resistance at low concentrations (0.5 to 1%) but decreased it at concentrations of 2 to 4%; (ii) nitrite was markedly inhibitory, especially at pH 6.0. At the normal pH of canned luncheon meats (approximately 6.0), nitrite appears to be the chief preservative agent against spoilage by putrefactive anaerobes.  相似文献   

7.
The mechanism(s) of chemical manipulation of the heat resistance of Clostridium perfringens type A spores was studied. Spores were converted to various ionic forms by base-exchange technique and these spores were heated at 95°C. Of the four ionic forms, i.e. Ca2+, Na+, H+ and native, only hydrogen spores appeared to have been rapidly inactivated at this temperature, when survivors were enumerated on the ordinary plating medium. However, the recovery of the survivors was improved when the plating medium was supplemented with lysozyme, and more dramatically when the heated spores were pretreated with alkali followed by plating in the medium containing lysozyme. In contrast to crucial damage to germination, in particular to spore lytic enzyme, no appreciable amount of DPA was released from the heat-damaged H-spores. These results suggest that a germination system is involved in the thermal inactivation of the ionic forms of spores, and that exchangeable cation load plays a role in protection from thermal damage of the germination system within the spore. An enhancement of thermal stability of spore lytic enzyme in the presence of a high concentration of NaCl was consistent with the hypothesis.  相似文献   

8.
Heat activation of Streptomyces viridochromogenes spores.   总被引:2,自引:2,他引:0  
The lag period preceding germination of Streptomyces viridochromogenes spores during incubation in a defined germination medium was completely eliminated by a gentle heat shock. The rate of germination was not affected. The optimum pH for activation extended from 6.0 to 9.6. The time of heating required for maximum activation was 1 min at 60 C, 2 to 5 min at 55 C, 20 min at 50 C, and 40 to 50 min at 45 C. Activated spores had the same temperature and pH optima and nutritional requirements for germination as unactivated spores. Activated spores deactivated during incubation for 8 h at 25 C and were activated again by a second heat shock. Spores that had been aged for 4 weeks or longer did not germinate in the defined germination medium unless they were first heat activated.  相似文献   

9.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

10.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

11.
S. CONDÓN, A. PALOP, J. RASO AND F.J. SALA. 1996. The influence of the incubation temperature on the estimated heat resistance for survivors after heat treatment was investigated. The survival curves and the D t values of spores of Bacillus subtilis heated at different temperatures in pH 7 buffer, obtained after incubating survivors at different temperatures (30, 37, 44 or 51°C), were compared. The incubation temperature influenced the profile of survival curves. Lower incubation temperatures led to bigger D t values and longer shoulders. D t values obtained after incubating at 30°C were higher (x3 approx.) than those obtained by incubating at 51°C. The incubation temperature did not modify z values ( z = 9.1). These results show that shoulders are not only due to the activation of dormant spores but also to heat damage repair mechanisms. From the profile of survival curves at different incubation temperatures it would seem that heat damage is accumulative. Cells can repair the initial heat injury, but the accumulation of injuries would eventually make the damage irreversible.  相似文献   

12.
Involvement of the spore coat in germination of Bacillus cereus T spores   总被引:2,自引:0,他引:2  
Bacillus cereus T spores were prepared on fortified nutrient agar, and the spore coat and outer membrane were extracted by 0.5% sodium dodecyl sulfate-100 mM dithiothreitol in 0.1 M sodium chloride (SDS-DTT) at pH 10.5 (coat-defective spores). Coat-defective spores in L-alanine plus adenosine germinated slowly and to a lesser extent than spores not treated with SDS-DTT, as determined by decrease in absorbance and release of dipicolinic acid and Ca2+. Spores germinated in calcium dipicolinate only after treatment with SDS-DTT. Biphasic and triphasic germination kinetics were observed with normal and coat-defective spores, respectively, in an environment with temperature increasing from 20 to 65 degrees C at a rate of 1 degree C/min. Therefore, the physical and biochemical processes involved in germination are modified by coat removal. The data suggest that a portion of the germination apparatus located interior to the coat may be protected by the coat and outer membrane or that the coat and outer membrane otherwise enhance germination in L-alanine plus adenosine. When coat-defective spores were heat activated with the dialyzed (12,000-Mr cutoff) components extracted from the spores, germination of the SDS-DTT-treated spores was enhanced; thus, one or more components located in the spore coat or outer membrane with a molecular weight greater than 12,000 were essential for fast germination.  相似文献   

13.
Spores of Bacillus cereus T treated with trichloroacetic acid (6.1--61.2 mM) were compared with untreated spores, and as the concentration of the chemical increased, the following alterations in spore properties were found: (1) the extent of germination decreased irrespective of the germination medium used; (2) the spores became sensitive to sodium hydroxide (1 N) and hydrochloric acid (0.27 N), but not to lysozyme (200 micrograms/ml); (3) loss of dipicolinate increased on subsequent heating; and (4) the spores became more sensitive to heat. However, trichloroacetic acid-treated spores were still viable and there was no significant change in spore components. The mechanism of action of trichloroacetic acid is discussed.  相似文献   

14.
Thermal inactivation and injury of Bacillus stearothermophilus spores   总被引:2,自引:0,他引:2  
Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation.  相似文献   

15.
Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation.  相似文献   

16.
The sodium chloride inhibition of spore outgrowth of four strains of type E Clostridium bolulinum was determined in a Trypticase-peptone-glucose (TPG) medium. At 16, 21, and 30 C, spores of three strains required 5.0% and one strain 4.5% salt for complete inhibition during 1 year of incubation. At 8 and 10 C, spores of the four strains required 4.5% salt for definite inhibition. Salt concentrations slightly lower than those providing inhibition tended to extend spore outgrowth time at low temperatures. The minimal pH permitting outgrowth of type E spore inocula was affected by the concentration of reducing compound present in the system. When either 0.02% sodium thioglycolate or 0.05% L-cysteine hydrochloride was used, outgrowth at 30 and 8 C occurred at much lower pH levels than when 0.2% thioglycolate was added. At 30 C, spores of one strain showed outgrowth in TPG medium as low as pH 5.21 with an inoculum of 2 million spores per replicate tube. At a 10-fold higher inoculum, the same strain showed outgrowth at pH 5.03 in one of five replicate tubes. At 8 C, spore outgrowth of the four strains occurred at pH 5.9, but not at pH 5.7, in TPG medium containing L-cysteine hydrochloride.  相似文献   

17.
Bacillus cereus T spores were prepared on fortified nutrient agar, and the spore coat and outer membrane were extracted by 0.5% sodium dodecyl sulfate-100 mM dithiothreitol in 0.1 M sodium chloride (SDS-DTT) at pH 10.5 (coat-defective spores). Coat-defective spores in L-alanine plus adenosine germinated slowly and to a lesser extent than spores not treated with SDS-DTT, as determined by decrease in absorbance and release of dipicolinic acid and Ca2+. Spores germinated in calcium dipicolinate only after treatment with SDS-DTT. Biphasic and triphasic germination kinetics were observed with normal and coat-defective spores, respectively, in an environment with temperature increasing from 20 to 65 degrees C at a rate of 1 degree C/min. Therefore, the physical and biochemical processes involved in germination are modified by coat removal. The data suggest that a portion of the germination apparatus located interior to the coat may be protected by the coat and outer membrane or that the coat and outer membrane otherwise enhance germination in L-alanine plus adenosine. When coat-defective spores were heat activated with the dialyzed (12,000-Mr cutoff) components extracted from the spores, germination of the SDS-DTT-treated spores was enhanced; thus, one or more components located in the spore coat or outer membrane with a molecular weight greater than 12,000 were essential for fast germination.  相似文献   

18.
Spores of Bacillus stearothermophilus were exposed to calcium and sodium salts of dipicolinic acid (DPA) in phosphate and Tris acid maleate buffers over the range pH 4.5–10.0. The exposed spores were enumerated using a standard plate counting technique from which the kinetics of colony formation were determined and maximum colony counts were obtained for each condition examined. Exposure of the spores to calcium-DPA (50-40 mmol/l) in Tris acid maleate buffer pH 9.0 maintained at 10°C was found to produce an optimal response. Following this method the total viable population of a spore suspension was enumerated. This was demonstrated statistically using the Wilcoxon rank-sum test for significance. Calcium-DPA was found to produce activation in spores but further germinants and nutrients were required for colony formation. The Ca-DPA treatment was found to be effective in enumerating both naturally dormant spores and heat injured spores.  相似文献   

19.
Heat injury and repair in Campylobacter jejuni   总被引:1,自引:0,他引:1  
A procedure for detecting and quantitating heat injury in Campylobacter jejuni was developed. Washed cells of C. jejuni A7455 were heated in potassium phosphate buffer (0.1 M, pH 7.3) at 46 degrees C. Samples were plated on brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate and on a medium containing brilliant green, bile, Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate. Colonies were counted after 5 days of incubation at 37 degrees C in an atmosphere containing 5% O2, 10% CO2, and 85% N2. After 45 min at 46 degrees C, there was virtually no killing and ca. two log cycles of injury. Cells grown at 42 degrees C were more susceptible to injury than cells grown at 37 degrees C. The addition to brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate of three different antibiotic mixtures used in the isolation of C. jejuni from foods or clinical specimens did not prevent recovery of heat-injured C. jejuni. Cells lost 260 nm of absorbing materials during heat injury. The addition of 5% NaCl or 40% sucrose to the heating buffer prevented leakage but did not prevent injury. Of the additional salts, sugars, and amino acids tested for protection, only NH4Cl, KCl, and LiCl2 prevented injury. Heat-injured C. jejuni repaired (regained dye and bile tolerance) in brucella broth supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate within 4 h. Increasing the NaCl in this medium to 1.25% inhibited repair, and increasing it to 2% was lethal. Heat-injured C. jejuni will repair at 42 degrees C but not at 5 degrees C.  相似文献   

20.
Heat injury and repair in Campylobacter jejuni.   总被引:3,自引:2,他引:1       下载免费PDF全文
A procedure for detecting and quantitating heat injury in Campylobacter jejuni was developed. Washed cells of C. jejuni A7455 were heated in potassium phosphate buffer (0.1 M, pH 7.3) at 46 degrees C. Samples were plated on brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate and on a medium containing brilliant green, bile, Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate. Colonies were counted after 5 days of incubation at 37 degrees C in an atmosphere containing 5% O2, 10% CO2, and 85% N2. After 45 min at 46 degrees C, there was virtually no killing and ca. two log cycles of injury. Cells grown at 42 degrees C were more susceptible to injury than cells grown at 37 degrees C. The addition to brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate of three different antibiotic mixtures used in the isolation of C. jejuni from foods or clinical specimens did not prevent recovery of heat-injured C. jejuni. Cells lost 260 nm of absorbing materials during heat injury. The addition of 5% NaCl or 40% sucrose to the heating buffer prevented leakage but did not prevent injury. Of the additional salts, sugars, and amino acids tested for protection, only NH4Cl, KCl, and LiCl2 prevented injury. Heat-injured C. jejuni repaired (regained dye and bile tolerance) in brucella broth supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate within 4 h. Increasing the NaCl in this medium to 1.25% inhibited repair, and increasing it to 2% was lethal. Heat-injured C. jejuni will repair at 42 degrees C but not at 5 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号