首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An assay for cellulase activity based on the oxidation of cellobiose, formed during the cellulase reaction, with ferricyanide and a cellobiose dehydrogenase derived from the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile is presented. Due to the restricted specificity of this enzyme for cellobiose and cellodextrins, glucose, which may be formed by the action of some cellulolytic components or by beta-glucosidase, does not contribute to the result. The negative interference of beta-glucosidase may be eliminated by glucono-delta-lactone inhibition. The assay, which is not influenced by cellobiose back-inhibition of the cellulase reaction, like the usual cellulase tests based on the increase in reducing power, is basically unspecific with respect to endo- or exo-acting enzymes giving rise to a total cellulase activity. With the use of an amorphous cellulose substrate (reprecipitated cellulose after dissolving in concentrated phosphoric acid), unpredictable effects due to cooperativity between endo- and exo-enzyme components were eliminated. An analytical procedure giving a linear response between activity and enzyme concentration and between activity and time of incubation has been worked out.  相似文献   

2.
Few bacteria are capable of degrading crystalline cellulose but there is considerable interest in the properties of enzyme systems with this capability. In the bovine and ovine rumen the principal cellulolytic bacterium is Fibrobacter (formerly Bacteroides) succinogenes. The cellulase system of this organism is composed of multiple enzyme components, including a constitutive and cell-associated beta-glucosidase active against cellobiose. The properties of the beta-glucosidase activity have been investigated with the chromogenic substrate p-nitrophenyl beta-D-glucoside (pNPG). Hydrolytic activity against pNPG was located primarily in the cytoplasm and the cytoplasmic membrane but showed a gradual migration to the periplasm during growth on either glucose or cellobiose. Activity against cellobiose was found in the periplasm in significant amounts in all growth phases. Of the beta-glucosides tested, only cellobiose and pNPG were hydrolysed by crude cell extracts. In the presence of cellobiose, however, the rate of hydrolysis of pNPG was stimulated up to 10-fold, and extracts hydrolysed methylumbelliferyl beta-D-glucoside, 5-bromo-4-chloro-3-indolyl beta-D-glucoside, arbutin and aesculin. Activities against pNPG in the presence and absence of cellobiose displayed similar instability in the presence of oxygen; both were stabilized by dithiothreitol and the temperature and pH optima were identical. A significant proportion of the membrane-associated beta-glucosidase was released by treatment with 0.3 mol/1 KCl, and fractionation by chromatography on CM-cellulose showed the presence of two activities against pNPG, only one of which was stimulated by cellobiose.  相似文献   

3.
The extracellular beta-glucosidase of Trichoderma viride generally is present in low levels when the organism is cultured on cellulose because it is inactivated under the acid conditions which develop in the medium while the other enzymes of the cellulase complex are more stable. With the appropriate pH control, inactivation of beta-glucosidase is prevented and the activity of this enzyme increases during growth. In the saccharification of crystalline cellulose, or of cellulose at low concentrations, much of the glucose produced is the result of the cleavage of cellobiose by beta-glucosidase. However when high concentrations (10%) of pretreated cellulose are saccharified, significant quantities of glucose are produced by action of enzymes other than beta-glucosidase.  相似文献   

4.
The extracellular beta-glucosidase of Trichoderma viride generally is present in low levels when the organism is cultured on cellulose because it is inactivated under the acid conditions which develop in the medium while the other enzymes of the cellulase complex are more stable. With the appropriate pH control, inactivation of beta-glucosidase is prevented and the activity of this enzyme increases during growth. In the saccharification of crystalline cellulose, or of cellulose at low concentrations, much of the glucose produced is the result of the cleavage of cellobiose by beta-glucosidase. However when high concentrations (10%) of pretreated cellulose are saccharified, significant quantities of glucose are produced by action of enzymes other than beta-glucosidase.  相似文献   

5.
Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment.  相似文献   

6.
Summary The cellobiose oxidizing enzyme of the newly isolated cellulolytic bacterium Cytophaga sp. LX-7 was produced extracellularly when grown on cellulose or other saccharides, which was previously noted only in fungi. The enzyme could use not only cellobiose, maltose, glucose and other saccharides but also cellulose as substrates, and use dichlorophenol indophenol and oxygen as electron acceptors.  相似文献   

7.
The optimisation of cellulase and beta-glucosidase production by a basidiomycete species was studied and cellulase and cellobiase production by this and Trichoderma viride (and its mutants) in shake flasks were compared. The former produced an active cellulase comparable to that of T. viride when tested on filter paper, carboxymethylcellulose, and cotton; however, it produced 20 to 26 times larger amounts of cellobiase. Both cellulase and beta-glucosidase were obtained in good yield only when cellulose was the carbon source. The production of these enzymes was not repressed by readily assimilated carbon sources in the presence of cellulose. Only traces of cellulase and beta-glucosidase were formed on glucose, fructose, maltose, and cellobiose although good growth was obtained on these substrates. These enzymes were not induced on sophorose, lactose, mannitol, or glycerol and growth was poor on these substrates. Cellobiose octaacetate was a less effective inducer of cellulase and beta-glucosidase than was cellulose.  相似文献   

8.
Trichoderma viride ITCC-1433 produces high yields of cellulase and especially beta-glucosidase when grown in submerged culture on different carbon sources. Cellulase synthesis was strongly repressed in the presence of glucose and only a low constitutive activity of beta-glucosidase and carboxymethylcellulase, but no Avicelase, could be demonstrated when culturing T. viride on glucose. With carboxymethylcellulose (CMC) as a substrate the secretion of enzyme as well as growth depended on the degree of substitution, but in general CMC cannot be regarded either as a powerful inducer or as a carbon source. With insoluble cellulose, maximum enzyme production and activities were obtained using an alkali-treated cellulose powder. On this substrate the excretion of soluble protein into the culture broth increased and the protein concentration corresponded to cellulolytic activities.  相似文献   

9.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on alpha-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus beta-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of alpha-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of beta-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying beta-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

10.
This paper describes the characterization of an intracellular beta-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific beta-glucosidase, having no beta-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this beta-glucosidase.  相似文献   

11.
Removal of beta-glucosidase (BG) from cellulase is essential to the enzymatic production of cellobiose from cellulose because of the high reactivity of BG with cellobiose to form glucose. Chitosan is a reversibly soluble-insoluble polymer depending on pH, and it has an affinity with the other components, endo-beta-1,4-glucanase and cellobiohydrolase, or cellulase. The affinity precipitation technique using chitosan is an effective way to fractionate cellulase for the above purpose. Hydrolysis experiments of cellulose with the residual fractionated enzyme gave higher cellobiose contents in the soluble sugar products. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
The plasmid pND71, which encodes beta-glucosidase (cellobiase) activity, cloned from the cellulolytic Pseudomonad, PS2-2, was mobilized by conjugation into 10 Pseudomonas strains. The highest specific activity was produced by 17498 (pND71) and the properties of the enzyme produced from this transconjugant were studied. The enzyme was shown to be cell associated, to have a temperature optimum of 37 degrees C, a pH optimum of 7.0 and Km values of 1.33 and 2.94 mM for pNPG and cellobiose respectively. It was competitively inhibited by glucose, with a Ki of 30 mM. Evidence was obtained which suggested that the enzyme was produced constitutively and that synthesis was not repressed by glucose. When culture preparations were used in combination with Trichoderma reesei QM9414 and C30 enzyme preparations to saccharify cellulose, 17498 (pND71) was more effective than preparations of PS2-2 in acting synergistically with T. reesei to solubilize more carbohydrate and produce more glucose.  相似文献   

13.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

14.
beta-Glucosidase activity in Myceliophthora thermophila D-14 (= ATCC 48104) was inducible and was produced in culture filtrate during growth with various inducers, of which PNPG (p-nitrophenyl-beta-d-glucoside) was the most efficient. Induction of beta-glucosidase also occurred when the organism was grown in medium supplemented with different carbon sources. Carboxymethyl cellulose, cellobiose, and Solka-Floc were found effective for induction of enzyme biosynthesis. The addition of glucose to the culture medium severely repressed beta-glucosidase synthesis, which could not be reversed by exogenous cyclic AMP or dibutyryl cyclic AMP.  相似文献   

15.
Degradation of cellulose by basidiomycetous fungi   总被引:5,自引:0,他引:5  
Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups.  相似文献   

16.
Summary The cellulolytic enzymes of various strains of the brown-rot fungus Coniophora puteana were studied. The organism was grown in an air-lift fermentor in mineral medium containing glucose, cellobiose or amorphous cellulose. The specific growth rate varied between 0.082 and 0.062 h–1. On amorphous cellulose as sole carbon source, the organism secreted various proteins, some of which were characterized. The mixture contained inter alia four endocellulases, two exo-cellobiohydrolases and a cellobiose dehydrogenase. Three endocellulases (named type I) were active on soluble cellulose derivatives but inactive on p-nitrophenyllactoside (p-NPL), whereas a fourth endocellulase (named type II) was active on both. The two exo-cellobiohydrolases released cellobiose from amorphous cellulose; they were inactive on soluble cellulose derivatives but hydrolyzed p-NPL with strong cellobiose inhibition. A cellobiose dehydrogenase having spectral characteristics compatible with a flavo b-cytochrome was also identified. Neither the exo-cellobiohydrolase nor the type II endocellulase were secreted during growth on cellobiose whereas type I endocellulases and cellobiose dehydrogenase were formed at a reduced rate. No formation of cellulolytic enzymes was observed during growth on glucose alone. Correspondence to: G. Canevascini  相似文献   

17.
The metabolism of glucose and cellobiose, products of cellulose hydrolysis, was investigated in four cellulolytic strains of the genus Fibrobacter: Fibrobacter succinogenes S85, 095, HM2 and Fibrobacter intestinalis NR9. In vivo 13C nuclear magnetic resonance was used to quantify the relative contribution of glucose and cellobiose to metabolite production, glycogen storage and cellodextrins synthesis in these four strains. The same features were found in all four strains of the genus Fibrobacter metabolizing simultaneously glucose and cellobiose: i) differential metabolism of glucose and cellobiose; glucose seems preferentially used for glycogen storage and energy production, while part of cellobiose seems to be diverted from glycolysis, ii) synthesis of cellodextrins, mainly from cellobiose not entering into glycolysis, iii) accumulation of glucose 6-phosphate, iv) simultaneous presence of cellobiose phosphorylase and cellobiase activities.Although genetically diverse, the Fibrobacter genus appears to possess a marked homogeneity in its carbon metabolism.  相似文献   

18.
A group I Bacillus strain, DLG, was isolated and characterized as being most closely related to Bacillus subtilis. When grown on any of a variety of sugars, the culture supernatant of this isolate was found to possess cellulolytic activity, as demonstrated by degradation of trinitrophenyl-carboxymethyl cellulose. Growth in medium containing cellobiose or glucose resulted in the greatest production of cellulolytic activity. The cellulolytic activity was not produced until the stationary phase of growth, and the addition of glucose or cellobiose to a culture in this phase had no apparent effect on enzyme production. Fractionation of the culture supernatant showed that the molecular weight of the enzymatic activity was less than 100,000. Maximum cellulolytic activity in assays was observed at pH 4.8 and at 58C, although maximum thermal stability of the activity. Kinetic experiments suggested that more than one enzyme was acting upon trinitrophenyl-carboxymethyl cellulose. Exocellular protein produced by this Bacillus isolate showed roughly one-fifth the cellulolytic activity displayed by Trichoderma reesei C30 on noncrystalline, cellulosic substrates. In contrast to T. reesei cellulase, the Bacillus enzymatic activity showed no ability to degrade crystalline forms of cellulose, nor was cellobiase activity detectable.  相似文献   

19.
An unknown species of Alternaria, when grown on a medium containing carboxymethylcellulose as a carbon source produced a mixture of extracellular enzymes which solubilized acid-swollen cellulose. The product of the hydrolysis was a 1:2 molar mixture of cellobiose and glucose. The organism apparently produced no cellobiase. It is suggested that the mixture of cellulolytic enzymes contains at least two different enzymes which degrade cellulose in an endwise manner.  相似文献   

20.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号