首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Dopaminergic neurons located in the ventral midbrain control movement, emotional behavior, and reward mechanisms1-3. The dysfunction of ventral midbrain dopaminergic neurons is implicated in Parkinson''s disease, Schizophrenia, depression, and dementia1-5. Thus, studying the regulation of midbrain dopaminergic neuron differentiation could not only provide important insight into mechanisms regulating midbrain development and neural progenitor fate specification, but also help develop new therapeutic strategies for treating a variety of human neurological disorders.Dopaminergic neurons differentiate from neural progenitors lining the ventricular zone of embryonic ventral midbrain. The development of neural progenitors is controlled by gene expression programs6,7. Here we report techniques utilizing electroporation to express genes specifically in the midbrain of Hamburger Hamilton (HH) stage 11 (thirteen somites, 42 hours) chick embryos8,9. The external development of chick embryos allows for convenient experimental manipulations at specific embryonic stages, with the effects determined at later developmental time points10-13. Chick embryonic neural tubes earlier than HH stage 13 (nineteen somites, 48 hours) consist of multipotent neural progenitors that are capable of differentiating into distinct cell types of the nervous system. The pCAG vector, which contains both a CMV promoter and a chick β-actin enhancer, allows for robust expression of Flag or other epitope-tagged constructs in embryonic chick neural tubes14. In this report, we emphasize special measures to achieve regionally restricted gene expression in embryonic midbrain dopaminergic neuron progenitors, including how to inject DNA constructs specifically into the embryonic midbrain region and how to pinpoint electroporation with small custom-made electrodes. Analyzing chick midbrain at later stages provides an excellent in vivo system for plasmid vector-mediated gain-of-function and loss-of-function studies of midbrain development. Modification of the experimental system may extend the assay to other parts of the nervous system for performing fate mapping analysis and for investigating the regulation of gene expression.  相似文献   

2.
The in vivo accessibility of the chick embryo makes it a favoured model system for experimental developmental biology. Although the range of available techniques now extends to miss-expression of genes through in ovo electroporation, it remains difficult to knock out individual gene expression. Recently, the possibility of silencing gene expression by RNAi in chick embryos has been reported. However, published studies show only discrete quantitative differences in the expression of the endogenous targeted genes and unclear morphological alterations. To elucidate whether the tools currently available are adequate to silence gene expression sufficiently to produce a clear and specific null-like mutant phenotype, we have performed several experiments with different molecules that trigger RNAi: dsRNA, siRNA, and shRNA produced from a plasmid coexpressing green fluorescent protein as an internal marker. Focussing on fgf8 expression in the developing isthmus, we show that no morphological defects are observed, and that fgf8 expression is neither silenced in embryos microinjected with dsRNA nor in embryos microinjected and electroporated with a pool of siRNAs. Moreover, fgf8 expression was not significantly silenced in most isthmic cells transformed with a plasmid producing engineered shRNAs to fgf8. We also show that siRNA molecules do not spread significantly from cell to cell as reported for invertebrates, suggesting the existence of molecular differences between different model systems that may explain the different responses to RNAi. Although our results are basically in agreement with previously reported studies, we suggest, in contrast to them, that with currently available tools and techniques the number of cells in which fgf8 gene expression is decreased, if any, is not sufficient to generate a detectable mutant phenotype, thus making RNAi useless as a routine method for functional gene analysis in chick embryos.  相似文献   

3.
In the chick embryo, two methods are now used for studying the developmental role of genes by loss-of-function approaches: vector-based shRNA and morpholino oligonucleotides. Both have the advantage that loss-of-function can be conducted in a spatially and temporally controlled way by focal electroporation. Here, we compare these two methods. We find that the shRNA expressing vectors pRFPRNAi, even when targeting a non-expressed protein like GFP, cause morphological phenotypes, mis-regulation of non-targeted genes and activation of the p53 pathway. These effects are highly reproducible, appear to be independent of the targeting sequence and are particularly severe at primitive streak and early somite stages. By contrast, morpholinos do not cause these effects. We propose that pRFPRNAi should only be used with considerable caution and that morpholinos are a preferable approach for gene knock-down during early chick development.  相似文献   

4.
Efficient gene transfer by electroporation of chick embryos in ovo has allowed the development of new approaches to the analysis of gene regulation, function and expression, creating an exciting opportunity to build upon the classical manipulative advantages of the chick embryonic system. This method is applicable to other vertebrate embryos and is an important tool with which to address cell and developmental biology questions. Here we describe the technical aspects of in ovo electroporation, its different applications and future perspectives.  相似文献   

5.
In this paper, the use of vector-based RNA interference (RNAi) to specifically interfere with gene expression in chick embryos is reported. In ovo electroporation was carried out to transfer a small interfering RNA (siRNA) expression vector into chick embryos. En2 was chosen for the target gene because the family gene, En1, is expressed in a similar pattern. Four sets of 19-mer sequences were designed with the En2 open reading frame region connected to a sequence of short hairpin RNA (shRNA), which exerts siRNA effects after being transcribed, and inserted into pSilencer U6-1.0 vector. En2 and En1 expression were suppressed by the siRNA whose sequence completely matched En2 and En1. Suppression occurred when the siRNA sequence differed by up to two nucleotides from the target sequence. The sequence that differed by four nucleotides from the target gene did not show siRNA effects. One set that completely matched the En2 target did not show siRNA effects, which may be due to location of the siRNA in the target gene. Thus, multiple sets of shRNA must be prepared if we are to consider. This system will greatly contribute to the analysis of function of genes of interest, because the target gene can be silenced in a locally and temporally desired manner.  相似文献   

6.
The introduction of in ovo electroporation a decade ago has helped the chick embryo to become a powerful system to study gene regulation and function during development. Although this is a simple procedure for embryos of 2-d incubation, earlier stages (from laying to early neurulation, 0-1 d) present special challenges. Here we describe a robust and reproducible protocol for electroporation of expression vectors and morpholino oligonucleotides into the epiblast of embryos from soon after laying (stage XI) to stages 6-7 (early neurulation), with precise spatial and temporal control. Within 3 h, about 12 embryos can be electroporated and set up for culture by the New technique; the effects of morpholinos can be assessed immediately after electroporation, and robust overexpression from plasmid DNA is seen 2-3 h after electroporation. These techniques can be used for time-lapse imaging, gain- and loss-of-function experiments and studying gene regulatory elements in living embryos.  相似文献   

7.
Screening for gene function in chicken embryo using RNAi and electroporation   总被引:15,自引:0,他引:15  
In the postgenomic era the elucidation of the physiological function of genes has become the rate-limiting step in the quest to understand the development and function of living organisms. Gene functions cannot be determined by high-throughput methods but require analysis in the context of the entire organism. This is particularly true in the developing vertebrate nervous system. Because of its easy accessibility in the egg, the chicken embryo has been the model of choice for developmental in vivo studies. However, its usefulness has been hampered by a lack of methods for genetic manipulation. Here we describe an approach that could compensate for this disadvantage. By combining gene silencing by dsRNA (through RNA interference, RNAi) with in ovo electroporation, we developed an efficient method to induce loss of gene function in vivo during the development of the chicken CNS. This method opens new possibilities for studying gene function not only by gain-of-function but also by loss-of-function approaches and therefore represents a new tool for functional genomics.  相似文献   

8.
The chick embryo is a versatile model system, in which classical embryology can be combined with modern molecular approaches. In the last two decades, several efficient methods have been developed to introduce exogenous genes into the chick embryo. These techniques allow alteration of gene expression levels in a spatially and temporally restricted manner, thereby circumventing embryonic lethality and/or eliminating secondary effects in other tissues. Here, we present the current status of avian somatic transgenic techniques, focusing on electroporation and retrovirus-mediated gene transfer. Electroporation allows quick and efficient gain-of-function studies based on transient misexpression of genes. Retroviral vectors, which are capable of integrating exogenous genes into the host chromosome, permit analysis of long-term effects of gene misexpression. The variety of methods available for somatic transgenesis, along with the recent completion of the chicken genome, are transforming the chick embryo into one of the most attractive model systems to examine function of genes that are important for embryonic development.  相似文献   

9.
Introduction of DNA into chick embryos by in ovo electroporation   总被引:3,自引:0,他引:3  
Gene transfer by in ovo electroporation has been applied to the study of developmental biology, especially to central nervous system (CNS) development. Plasmids are injected into the neural tube of stage 10 chick embryos, and a 25-V 25-msec square pulse is applied five times. Since DNA moves toward the anode, the cathode side of the neural tube is transfected, and the cathode side is used as the control. Expression of translation product of the introduced DNA is observed 2 h after electroporation, peaks around 20 h after electroporation and then weakens. Expression is transient when plasmids are used as expression vectors, but they are very suitable for studying early developmental events (e.g., gene expression cascades or interactions). Misexpression of Pax-5 is shown as an example.  相似文献   

10.
We introduce a revolutionary gene transfer system in chick: transfect chick embryos at early developmental stage by electroporation in vitro, Early Chick (EC) culture, and transplant to the egg to let the embryo survive until E5.5. Referring to the fate map, we could target the tissues of transfection, or transfect large areas of the embryo. We could get tissue-specific expression of a transgene by tissue-specific promoter. This method is very convenient and rapid, but allows us to get stable expression of the transgene in combination with transposon system.  相似文献   

11.
Adenosine kinase (AK) is one of the most important enzymes in the Toxoplasma gondii purine salvage pathway. Three siRNAs specific to the AK gene were designed in the present study. At 24h following electroporation, two of them (siRNA786 and siRNA1200) significantly reduced the mRNA level compared with mock electroporation (P <0.05). The ability to incorporate [3H]-adenosine in the parasites electroporated with 4 microM siRNA786 or 4 microM siRNA1200 was decreased to 39+/-11% and 39+/-7% of the mock electroporation, respectively. At the 48th hour of electroporation, the enzyme's activity was still significantly lower than that of mock electroporation. The data show the siRNAs transfected into cells can work efficiently to regulate gene expression in T. gondii. The application of siRNA in interrupting gene expression in T. gondii would be useful for elucidating gene function as a step toward development of anti-toxoplasmasis vaccines and therapeutic reagents.  相似文献   

12.
13.
The chick; a great model system becomes even greater   总被引:4,自引:0,他引:4  
The chick embryo has a long and distinguished history as a major model system in developmental biology and has also contributed major concepts to immunology, genetics, virology, cancer, and cell biology. Now, it has become even more powerful thanks to several new technologies: in vivo electroporation (allowing gain- and loss-of-function in vivo in a time- and space-controlled way), embryonic stem (ES) cells, novel methods for transgenesis, and the completion of the first draft of the sequence of its genome along with many new resources to access this information. In combination with classical techniques such as grafting and lineage tracing, the chicken is now one of the most versatile experimental systems available.  相似文献   

14.
15.
Manipulation of gene expression is one of the most informative ways to study gene function. Genetic screens have been an informative method to identify genes involved in developmental processes. In the zebrafish, loss-of-function screens have been the primary approach for these studies. We sought to complement loss-of-function screens using an unbiased approach to overexpress genes with a Gal4-UAS based system, similar to the gain-of-function screens in Drosophila. Using MMLV as a mutagenic vector, a cassette containing a UAS promoter was readily inserted in the genome, often at the 5′ end of genes, allowing Gal4-dependent overexpression. We confirmed that genes downstream of the viral insertions were overexpressed in a Gal4-VP16 dependent manner. We further demonstrate that misexpression of one such downstream gene gucy2F, a membrane-bound guanylate cyclase, throughout the nervous system results in multiple defects including a loss of forebrain neurons. This suggests proper control of cGMP production is important in neuronal survival. From this study, we propose that this gain-of-function approach can be applied to large-scale genetic screens in a vertebrate model organism and may reveal previously unknown gene function. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. FJ151012, FJ151013, and FJ151014.  相似文献   

16.
17.
The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system. The previously known functions of UFO could be separated and related to its expression at specific stages of development. We show that a 24- to 48-hour period of UFO expression from floral stage 2, before any floral organs are visible, is sufficient to restore normal petal and stamen development. The earliest requirement for UFO is during stage 2, when the endogenous UFO gene is transiently expressed in the centre of the wild-type flower and is required to specify the initiation patterns of petal, stamen and carpel primordia. Petal and stamen identity is determined during stages 2 or 3, when UFO is normally expressed in the presumptive second and third whorl. Although endogenous UFO expression is absent from the stamen whorl from stage 4 onwards, stamen identity can be restored by UFO activation up to stage 6. We also observed floral phenotypes not observed in loss-of-function or constitutive gain-of-function backgrounds, revealing additional roles of UFO in outgrowth of petal primordia.  相似文献   

18.
19.
20.
Electroporation is a powerful tool with which to study limb development. Limb development, however, remains an intricate series of events, requiring the precise dissection of developmental processes using relevant transgenes. In this review, we describe the anatomy of the limb field as the basis of targeted electroporation, and specific expression vectors are discussed. We share a useful protocol for electroporation of chick limb buds, and the expression pattern of enhanced green fluorescent protein in the limb buds is used to demonstrate relevant embryonic patterning. Finally, useful trouble-shooting techniques are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号