首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

2.

Objective

To investigate green synthesis of gold nanoparticles (AuNPs) by Trichosporon montevideense, and to study their reduction of nitroaromatics.

Results

AuNPs had a characteristic absorption maximum at 535 nm. Scanning electron microscopy images revealed that the biosynthesized nanoparticles were attached on the cell surface. X-ray diffraction analysis indicated that the particles formed as face-centered cubic (111)-oriented crystals. The average size of AuNPs decreased from 53 to 12 nm with increasing biomass concentration. The catalytic reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitrophenylamine and m-nitrophenylamine (0.1 mM) by NaBH4 had reaction rate constants of 0.32, 0.44, 0.09, 0.24 and 0.39 min?1 with addition of 1.45 × 10?2 mM AuNPs.

Conclusions

An eco-friendly approach for synthesis of AuNPs by T. montevideense is reported for the first time. The biogenic AuNPs could serve as efficient catalysts for hydrogenation of various nitroaromatics.
  相似文献   

3.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

4.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

5.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

6.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

7.

Background

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses.

Methods

A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against B. burgdorferi sensu lato and A. phagocytophilum by the use of the SNAP®4DX ® ELISA test.

Results

Overall, 29.0% of the horses were seropositive for B. burgdorferi sensu lato whereas 22.3% were seropositive for A. phagocytophilum.

Conclusions

Antibodies against B burgdorferi sensu lato and A. phagocytophilum are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.
  相似文献   

8.

Objectives

To improve the production and molecular mass of the glycosaminoglycan hyaluronan (HA) in Bacillus subtilis by engineering hyaluronan synthase (HAS) from Streptococcus zooepidemicus.

Results

By mutating regions within HAS intracellular domains, five positive variants exhibiting higher HA production (from 1.22 to 2.24 g l?1) and molecular mass values (from 1.20 to 1.36 × 106 Da) were constructed and characterized. Overexpression of the V5 variant and the genes tuaD and glmU increased HA production and molecular mass to 2.8 g l?1 and 2.4 × 106 Da, respectively.

Conclusions

This study provides a novel strategy for improving HA production and its molecular mass.
  相似文献   

9.

Objective

To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation.

Results

C. acutatum and C. nymphaeae used limonene, α-pinene, β-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34–4.01 g limonene-1,2-diol l?1, depending on the substrate (R-(+)-limonene, S-(?)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product.

Conclusions

This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.
  相似文献   

10.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

11.

Objectives

To find a novel host for the production of 4-vinylphenol (4VPh) by screening Streptomyces species.

Results

The conversion of p-coumaric acid (pHCA) to 4VPh in Streptomyces mobaraense was evaluated using a medium containing pHCA. S. mobaraense readily assimilated pHCA after 24 h of cultivation to produce 4VPh. A phenolic acid decarboxylase, derived from S. mobaraense (SmPAD), was purified following heterologous expression in Escherichia coli. SmPAD was evaluated under various conditions, and the enzyme’s kcat/Km value was 0.54 mM ?1 s?1. Using intergenetic conjugation, a gene from Rhodobacter sphaeroides encoding a tyrosine ammonia lyase, which catalyzes the conversion of l-tyrosine to p-coumaric acid, was introduced into S. mobaraense. The resulting S. mobaraense transformant produced 273 mg 4VPh l?1 from 10 g glucose l?1.

Conclusion

A novel strain suitable for the production of 4VPh and potentially other aromatic compounds was isolated.
  相似文献   

12.

Objectives

To engineer Escherichia coli for the heterologous production of di-rhamnolipids, which are important biosurfactants but mainly produced by opportunistic pathogen Pseudomonas aeruginosa.

Results

The codon-optimized rhlAB and rhlC genes originating from P. aeruginosa and Burkholderia pseudomallei were combinatorially expressed in E. coli to produce di-rhamnolipids with varied congeners compositions. Genes involved in endogenous upstream pathways (rhamnose and fatty acids synthesis) were co-overexpressed with rhlABrhlC, resulting in variations of rhamnolipids production and congeners compositions. Under the shake-flask condition, co-overexpression of rfbD with rhlABrhlC increased rhamnolipids production (0.64 ± 0.02 g l?1) than that in strain only expressing rhlABrhlC (0.446 ± 0.009 g l?1), which was mainly composed of di-rhamnolipids congeners Rha–Rha–C10–C10.

Conclusion

Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically engineered E. coli strains were achieved via combiniations of mono-/di-rhamnolipids synthesis modules and endogenous upstream modules.
  相似文献   

13.

Objective

To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans.

Results

Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans.

Conclusions

A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller’s dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.
  相似文献   

14.

Objectives

To engineer the yeast Saccharomyces cerevisiae for the heterologous production of linalool.

Results

Expression of linalool synthase gene from Lavandula angustifolia enabled heterologous production of linalool in S. cerevisiae. Downregulation of ERG9 gene, that encodes squalene synthase, by replacing its native promoter with the repressible MET3 promoter in the presence of methionine resulted in accumulation of 78 µg linalool l?1 in the culture medium. This was more than twice that produced by the control strain. The highest linalool titer was obtained by combined repression of ERG9 and overexpression of tHMG1. The yeast strain harboring both modifications produced 95 μg linalool l?1.

Conclusions

Although overexpression of tHMG1 and downregulation of ERG9 enhanced linalool titers threefold in the engineered yeast strain, alleviating linalool toxicity is necessary for further improvement of linalool biosynthesis in yeast.
  相似文献   

15.

Objective

To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass.

Results

A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced–colony formation of Scenedesmus. The maximum colony size at 15–25 °C was significantly larger than those at 30–35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass.

Conclusion

Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15–25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.
  相似文献   

16.

Objectives

To evaluate different codon optimization parameters on the Saccharomyces cerevisiae-derived mating factor α prepro-leader sequence (MFLS) to improve Candida antarctica lipase B (CAL-B) secretory production in Pichia pastoris.

Results

Codon optimization based on the individual codon usage (ICU) and codon context (CC) design parameters enhanced secretory production of CAL-B to 7 U/ml and 12 U/ml, respectively. Only 3 U/ml was obtained with the wild type sequence while the sequence optimized using both ICU and CC objectives showed intermediate performance of 10 U/ml. These results clearly show that CC is the most relevant parameter for the codon optimization of MFLS in P. pastoris, and there is no synergistic effect achieved by considering both ICU and CC together.

Conclusion

The CC optimized MFLS increased secretory protein production of CAL-B in P. pastoris by fourfold.
  相似文献   

17.

Objective

To investigate the expression and immobilization of recombinant cis-epoxysuccinate hydrolase (ESH), and its application in the biological production of l-(+)-tartaric acid.

Results

E. coli BL21 (DE3)/pET11a-ESH (His) was engineered to express recombinant ESH. The enzyme had an activity of 262 U mg?1. The recombinant ESH was immobilized on agarose Ni-IDA matrix with metal ion affinity interaction to improve its thermostability and pH stability. The immobilization efficiency and activity yield were 94 and 95%, respectively. The specific catalytic efficiency of immobilized ESH was 104 mg U?1 h?1 during the continuous enzymatic production process.

Conclusion

ESH with a histidine tag was immobilized and used for the continuous production of l-(+)-tartaric acid.
  相似文献   

18.

Objective

To identify useful native promoters of Corynebacterium glutamicum for fine-tuning of gene expression in metabolic engineering.

Results

Sixteen native promoters of C. glutamicum were characterized. These promoters covered a strength range of 31-fold with small increments and exhibited relatively stable activity during the whole growth phase using β-galactosidase as the reporter. The mRNA level and enzymatic activity of the lacZ reporter gene exhibited high correlation (R 2 = 0.96) under the control of these promoters. Sequence analysis found that strong promoters had high similarity of the -10 hexamer to the consensus sequence and preference of the AT-rich UP element upstream the -35 region. To test the utility of the promoter library, the characterized native promoters were applied to modulate the sucCD-encoded succinyl-CoA synthetase expression for l-lysine overproduction.

Conclusions

The native promoters with various strengths realize the efficient and precise regulation of gene expression in metabolic engineering of C. glutamicum.
  相似文献   

19.

Objective

To identify a novel gene responsible for organic solvent-tolerance by screening a transposon-mediated deletion mutant library based on Saccharomyces cerevisiae L3262.

Results

One strain tolerant of up to 0.5 % (v/v) n-hexane and cyclohexane was isolated. The determination of transposon insertion site identified one gene, YLR162W, and revealed disruption of the ORF of this gene, indicating that organic solvent tolerance can be conferred. Such a tolerant phenotype reverted to the sensitive phenotype on the autologous or overexpression of this gene. This transposon mutant grew faster than the control strain when cultured at 30 °C in YPD medium containing 0.5 % (v/v) n-hexane and cyclohexane respectively.

Conclusion

Disruption of YLR162W in S. cerevisiae results in increased tolerance to organic solvents.
  相似文献   

20.

Objectives

To establish a method for microbial transglutaminase (mTG)-mediated PEGylation of proteins at the level of lysine (Lys) residues.

Results

Carboxybenzyl-glutaminyl–glycinyl-methoxypolyethylene glycol (CBZ-QG-mPEG) was prepared by introducing carboxybenzyl-glutaminyl-glycine (CBZ-QG) to mPEG amine. The analysis by Fourier transform infrared spectroscopy and SDS-PAGE showed that CBZ-QG-mPEG was successfully synthesized and can be recognized by mTG as an acyl donor to modify therapeutic protein, cytochrome c (cyt c). Finally, under an optimized condition (cyt c 0.5 mg/ml, CBZ-QG-mPEG 11.25 mg/ml, mTG 0.5 mg/ml, 37 °C, 2 h), the PEGylation yield reached 76.5 %.

Conclusions

This is the first study regarding the PEGylation of protein at the level of Lys residues catalyzed by mTG. The novel method could be employed to immobilize active proteins and modify therapeutic proteins.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号