首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

2.
Aim We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location Twenty‐two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North‐East Atlantic to the northern Mediterranean coast of Spain. Methods We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close‐echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.  相似文献   

3.
The abundance of a species is not constant across its geographical range; it has often been assumed to decrease from the centre of a species’ range toward its margins. The central assumption of this “favourable centre” model is tested for the first time with parasites, using different species of helminth parasites exploiting fish as definitive hosts. Data on prevalence (percentage of hosts that are infected) and abundance (mean no. parasites per host) were compiled for 8 helminth species occurring in 23 populations of yellow perch Perca flavescens, from continental North America. For each parasite species, correlations were computed between latitude and both local prevalence and abundance values. In addition, the relationships between the relative prevalence or abundance in one locality and the distance between that locality and the one where the maximum value was reported, were assessed separately for each species to determine whether abundance tends to decrease away from the presumed centre of the range, where it peaks. For both the cestode Proteocephalus pearsei and the acanthocephalan Leptorhynchoides thecatus, there was a positive relationship between prevalence or abundance and the latitude of the sampled population. There was also a significant negative relationship between relative prevalence and the distance from the locality showing the maximum value in P. pearsei, but no such pattern was observed for the other 7 parasite species. Since this single significant decrease in prevalence with increasing distance from the peak value may be confounded by a latitudinal gradient, it appears that the distribution of abundance in parasites of perch does not follow the favourable centre model. This means that the environmental variables affecting the density of parasites (host availability, abiotic conditions) do not show pronounced spatial autocorrelation, with nearby sites not necessarily providing more similar conditions for the growth of parasite populations than distant sites.  相似文献   

4.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

5.
Parasite communities tend to be dissimilar in hosts that are geographically, phylogenetically, ecologically and developmentally distant from one another. The decay of community similarity is a powerful and increasingly common method of studying parasite beta diversity, but most studies have examined only a single type of distance. Here, we evaluate distances based on the phylogeny, ecology, spatial proximity and size of hosts, as predictors of the similarity of parasite communities in individual hosts, host populations and host species. We surveyed parasites in six species of fish collected simultaneously from six localities in the St. Lawrence River, Canada, and species in a common group of larval parasites were discriminated using DNA sequences from barcode region of cytochrome c oxidase I. Distances based on the habitat use patterns of host species were good predictors of short‐term, ecological similarity of parasite communities, such as that operating at the scale of the individual host. The genetic distance between host species was associated with almost all types of similarity at all scales, particularly qualitative and phylogenetic similarity of parasite communities at the level of populations and meta‐populations of hosts. The trophic level, diet, spatial proximity and size of hosts were poor predictors of parasite community similarity. The increased taxonomic resolution provided by molecular data increased the explanatory power of regression models, and different factors were implicated when parasite species were distinguished with DNA barcodes than when larval parasites were lumped into morphospecies, as is commonly practiced.  相似文献   

6.
Similarity in parasite community composition often decreases with both increasing geographic distance and environmental dissimilarity between localities, though it is unknown whether similarity in local abundance of selected parasite species follows similar rules. We tested this using data on metazoan parasites in 126 stickleback (Gasterosteus aculeatus) populations, with locations from Eurasia, eastern North America, and western North America treated separately. Similarity values were regressed against pairwise distances between localities; after correcting for distance, the effect of environmental dissimilarity was assessed by splitting similarity values into those between pairs of localities with either similar, moderately different or very different salinity (freshwater, marine or brackish). For selected parasite species, pairwise similarity in abundance (mean no. parasites per host) were computed across all localities, and treated as above. Similarity in parasite community composition decreased with increasing distance between localities in all three geographic regions. A significant effect of environmental difference was found in all regions: for a given distance between two sites, their parasite communities were more similar if they were of the same salinity. Slopes for distance decay in similarity were consistently higher for eastern North America than for Eurasia. Among the 12 parasite species for which sufficient data were available, only 4 showed the expected relationship, i.e. the greater the geographical separation between host populations, the greater the difference in parasite abundance; also, significant effects of environmental differences in salinity were only found for 3 of these species. Our findings show that parasite communities of sticklebacks are structured by geographical distance and local salinity conditions. The results indicate that strong effects at the community level do not translate into corresponding effects at the population level, suggesting that parasite dispersal and population dynamics are controlled by different processes.  相似文献   

7.
Infectious disease risk is thought to increase in the tropics, but little is known about latitudinal gradients of parasite diversity. We used a comparative data set encompassing 330 parasite species reported from 119 primate hosts to examine latitudinal gradients in the diversity of micro and macroparasites per primate host species. Analyses conducted with and without controlling for host phylogeny showed that parasite species richness increased closer to the equator for protozoan parasites, but not for viruses or helminths. Relative to other major parasite groups, protozoa reported from wild primates were transmitted disproportionately by arthropod vectors. Within the protozoa, our results revealed that vector‐borne parasites showed a highly significant latitudinal gradient in species richness. This higher diversity of vector‐borne protozoa near the tropics could be influenced by a greater abundance or diversity of biting arthropods in the tropics, or by climatic effects on vector behaviour and parasite development. Many vector‐borne diseases, such as leishmaniasis, trypanosomiasis, and malaria pose risks to both humans and wildlife, and nearly one‐third of the protozoan parasites from free‐living primates in our data set have been reported to infect humans. Because the geographical distribution and prevalence of many vector‐borne parasites are expected to increase because of global warming, these results are important for predicting future parasite‐mediated threats to biodiversity and human health.  相似文献   

8.
The latitudinal diversity gradient (LDG) is an established macroecological pattern, but is poorly studied in microbial organisms, particularly parasites. In this study, we tested whether latitude, elevation, and host species predicted patterns of prevalence, alpha diversity, and community turnover of hemosporidian parasites. We expected parasite diversity to decrease with latitude, alongside the diversity of their hosts and vectors. Similarly, we expected infection prevalence to decrease with latitude as vector abundances decrease. Lastly, we expected parasite community turnover to increase with latitudinal distance and to be higher between rather than within host species. We tested these hypotheses by screening blood and tissue samples of three closely related avian species in a clade of North American songbirds (Turdidae: Catharus, n = 466) across 17.5° of latitude. We used a nested PCR approach to identify parasites in hemosporidian genera that are transmitted by different dipteran vectors. Then, we implemented linear‐mixed effects and generalized dissimilarity models to evaluate the effects of latitude, elevation, and host species on parasite metrics. We found high diversity of hemosporidian parasites in Catharus thrushes (n = 44 lineages) but no evidence of latitudinal gradients in alpha diversity or prevalence. Parasites in the genus Leucocytozoon were most prevalent and lineage rich in this study system; however, there was limited turnover with latitude and host species. Contrastingly, Plasmodium parasites were less prevalent and diverse than Leucocytozoon parasites, yet communities turned over at a higher rate with latitude and host species. Leucocytozoon communities were skewed by the dominance of one or two highly prevalent lineages with broad latitudinal distributions. The few studies that evaluate the hemosporidian LDG do not find consistent patterns of prevalence and diversity, which makes it challenging to predict how they will respond to global climate change.  相似文献   

9.
Although avian malarial parasites are globally distributed, the factors that affect the geographical distribution and local prevalence of different parasite lineages across host populations or species are still poorly understood. Based on the intense screening of avian malarial parasites in nine European blue tit populations, we studied whether distribution ranges as well as local adaptation, host specialization and phylogenetic relationships can determine the observed prevalences within populations. We found that prevalence differed consistently between parasite lineages and host populations, indicating that the transmission success of parasites is lineage specific but is partly shaped by locality-specific effects. We also found that the lineage-specific estimate of prevalence was related to the distribution range of parasites: lineages found in more host populations were generally more prevalent within these populations. Additionally, parasites with high prevalence that were also widely distributed among blue tit populations were also found to infect more host species. These findings suggest that parasites reaching high local prevalence can also realize wide distribution at a global scale that can have further consequences for host specialization. Although phylogenetic relationships among parasites did not predict prevalence, we detected a close match between a tree based on the geographic distance of the host populations and the parasite phylogenetic tree, implying that neighbouring host populations shared a related parasite fauna.  相似文献   

10.
Patterns of distance decay in similarity among communities of the fish Pinguipes brasilianus (Teleostei: Pinguipedidae) from five areas in the southwestern Atlantic were investigated to determine whether the rate of decay varied depending on the community level or the parasite guild analyzed (ectoparasites, adult endoparasites and larval endoparasites). Similarities in species composition were computed at both the component community and infracommunity levels. Similarity indices were calculated between all possible pairs of assemblages from different zones. Infracommunity similarity values between and within host populations were averaged. Significance of linear regressions for similarity values against distance was assessed using randomization tests. Different patterns were observed for each guild, and similarity among infracommunities within host populations varied accordingly. Decay in similarity over distance was recorded for most communities. The slopes differed significantly between infracommunities and component communities in all cases, and stronger decay was always observed for infracommunities. Different geographical patterns in parasite communities were a consequence of variability in parasite availability in the different regions, modulated by oceanographic conditions, as well as variation among species in terms of host specificity and life-cycles strategies. Infracommunities showed a stronger effect of distance than component communities, probably due to the influence of short term and local variability of oceanographic conditions.  相似文献   

11.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

12.
13.
Parasites are important selective forces upon the evolutionary ecology of their hosts. At least one hypothesis suggests that high species diversity in the tropics is associated with higher parasite abundance in tropical climates. Few studies, however, have directly assessed whether parasite abundance is higher in the tropics. To address this question, it is ideal, although seldom achievable, to compare parasite abundance in a single species that occurs over a geographical area including both temperate and tropical regions. We examined variation in blood parasite abundance in seven populations of a single lizard host species ( Eulamprus quoyii ) using a transect that spans temperate and tropical climates. Parasite prevalence (proportion of the host population infected) showed no geographical pattern. Interestingly though, parasite load was higher in lizard populations in the tropics, and was related to mean annual temperature, but not to rainfall. We speculate that in this system the relationship between latitude and parasite load is most likely due to variation in host life history over their geographic range.  相似文献   

14.
We explored the relationships between features of host species and their environment, and the diversity, composition and structure of parasite faunas and communities using a large taxonomically consistent dataset of host-parasite associations and host-prey associations, and original environmental and host trait data (diet, trophic level, population density and habitat depth vagility) for the most abundant demersal fish species off the Catalonian coast of the Western Mediterranean. Altogether 98 species/taxa belonging to seven major parasite groups were recovered in 683 fish belonging to 10 species from seven families and four orders. Our analyses revealed that (i) the parasite fauna of the region is rich and dominated by digeneans; (ii) the host parasite faunas and communities exhibited wide variations in richness, abundance and similarity due to a strong phylogenetic component; (iii) the levels of host sharing were low and involved host generalists and larval parasites; (iv) the multivariate similarity pattern of prey samples showed significant associations with hosts and host trophic guilds; (v) prey compositional similarity was not associated with the similarity of trophically transmitted parasite assemblages; and (vi) phylogeny and fish autecological traits were the best predictors of parasite community metrics in the host-parasite system studied.  相似文献   

15.
The effect of geographical distance on similarity in parasite communities of freshwater fish has received considerable attention in recent years, and it has become evident that these apparently simple relationships are influenced by, among other things, colonization ability of parasites and degree of connectivity between the populations. In the present paper, we explored qualitative and quantitative similarity in the intestinal parasite communities of pike (Esox lucius) in a particular system where previously interconnected groups of lakes became isolated ca. 8,400 yr ago. Contrary to our expectations, we did not find differences in similarity between the lake groups or a negative effect of distance among the populations. This supports the role of common ancestral colonization events and shows that no significant loss of species has occurred during the past 8,000 yr. However, the communities were dominated by a single parasite species, the cestode Triaenophorus nodulosus. The exclusion of this species from the data had a significant negative impact on the community similarities and also revealed a negative relationship between distance and quantitative similarity. This suggests that patterns of community organization may be obscured by a single dominant species. We also highlight the need for further studies in different systems and host species, as well as detailed reanalysis of existing data sets, to unravel the controversy in the relationship between distance and similarity in parasite communities.  相似文献   

16.
We investigated the distribution patterns of yeast communities in freshwater lakes along a latitudinal gradient in order to evaluate yeast biogeography at intercontinental (501–8000 km), regional (0–500 km) and local (0–1 km) geographical scales. We identified 285 yeast isolates belonging to 64 species based on sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit of rRNA genes. Distance decay analysis showed a significant negative slope curve at the intercontinental scale. At the intercontinental and regional scales, the dissimilarity of the yeast communities was correlated with geographical distance, with community similarity decreasing with increasing distance. The physiological profiles of the yeast communities from tropical and Patagonian lakes were similar but were different from those of Antarctic lakes. This is the first report of latitudinal patterns of lake yeast diversity along a gradient extending from Antarctic to tropical environments.  相似文献   

17.
Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables? Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic. Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method. Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature. Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co‐evolutionary history to determine local parasite biodiversity.  相似文献   

18.
1. We estimated the correlation between host phylogeographical structure and beta diversity of avian haemosporidian assemblages of passerine birds to determine the degree to which parasite communities change with host evolution, expressed as genetic divergence between island populations, and we investigated whether differences among islands in the haemosporidia of a particular host species reflect beta diversity in the entire parasite assemblage, beta diversity in vectors, turnover of bird species and/or geographical distance. 2. We used Mantel tests to assess the significance of partial correlations between host nucleotide difference (based on cytochrome b) and haemosporidian (Haemoproteus spp. and Plasmodium spp.) mitochondrial lineage beta diversity within a given host species and between Plasmodium mitochondrial lineage beta diversity and mosquito and bird species beta diversity (or turnover). Three abundant and widespread host species (Tiaris bicolor, Coereba flaveola and Loxigilla noctis/barbadensis) were included in the study. Haemosporidian lineage beta diversity among nine islands was assessed using the Chao-Jaccard, Chao-S?rensen and Morisita-Horn indices of community similarity. Beta diversity indices of mosquito species and turnover of bird species were calculated from data in published records and field guides. 3. In Loxigilla spp., we found a positive correlation with geographical distance and an unexpected negative correlation between haemosporidian beta diversity and host genetic distance. Tiaris bicolor exhibited a significant positive correlation between haemosporidian beta diversity and beta diversity within the entire parasite assemblage. We did not find significant correlations between parasite beta diversity and mosquito beta diversity or bird species turnover. 4. Host phylogeographical structure does not appear to drive within-host beta diversity of haemosporidian lineages. Instead, the array of parasites on one host can reflect the haemosporidian assemblage on other hosts.  相似文献   

19.
Aim The rate at which similarity in species composition decays with increasing distance was investigated among communities of parasitic helminths in different populations of the same host species. Rates of distance decay in similarity of parasite communities were compared between populations of fish and mammal hosts, which differ with respect to their vagility and potential to disperse parasite species over large distances. Location Data on helminth communities were compiled for several populations of three mammalian host species (Ondatra zibethicus, Procyon lotor and Canis latrans) and three fish host species (Perca flavescens, Catostomus commersoni and Esox lucius) from continental North America. Methods Distances between localities and similarity in the composition of helminth communities, the latter computed using the Jaccard index, were calculated for all possible pairs of host populations within each host species. Similarity values were then regressed against distance to see if they decayed at exponential rates, as reported for plant communities; the significance of the regressions was assessed using randomization tests. Results The number of hosts examined per population did not correlate with the number of helminth species found per population, and thus sampling effort is unlikely to have confounded the results. In four (two mammals and two fish) of the six host species, similarity in helminth communities decayed exponentially with distance. When the log of similarity is plotted against untransformed distance, the slopes obtained for the two fish species are lower than those obtained for the two mammalian host species. Main conclusions Similarity in the composition of parasite communities appears to decay exponentially with increasing distance in some host species, but not in all host species. The rate of decay is not necessarily associated with the vagility of the host. Although distance decay of similarity is generally occurring, it seems that other ecological processes, related either to the host or its habitat, can obscure it.  相似文献   

20.
Comparative ecology uses interspecific relationships among traits, while accounting for the phylogenetic non-independence of species, to uncover general evolutionary processes. Applied to biogeographic questions, it can be a powerful tool to explain the spatial distribution of organisms. Here, we review how comparative methods can elucidate biogeographic patterns and processes, using analyses of distributional data on parasites (fleas and helminths) as case studies. Methods exist to detect phylogenetic signals, i.e. the degree of phylogenetic dependence of a given character, and either to control for these signals in statistical analyses of interspecific data, or to measure their contribution to variance. Parasite–host interactions present a special case, as a given trait may be a parasite trait, a host trait or a property of the coevolved association rather than of one participant only. For some analyses, it is therefore necessary to correct simultaneously for both parasite phylogeny and host phylogeny, or to evaluate which has the greatest influence on trait expression. Using comparative approaches, we show that two fundamental properties of parasites, their niche breadth, i.e. host specificity, and the nature of their life cycle, can explain interspecific and latitudinal variation in the sizes of their geographical ranges, or rates of distance decay in the similarity of parasite communities. These findings illustrate the ways in which phylogenetically based comparative methods can contribute to biogeographic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号