首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.  相似文献   

2.
3.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.  相似文献   

4.

Aims

The aims of this work were to investigate the aluminum (Al) and phosphate (P) interactions in the regulation of root system architecture of Arabidopsis thaliana seedlings and the contribution of auxin signaling in primary and lateral root growth in response to Al toxicity.

Methods

Detailed analyses of root system architecture and cell division were performed in Arabidopsis WT seedlings and in low phosphorus insensitive mutants lpi1-3 and lpr1-1 lpr2-1 in response to Al. Expression studies of P-deficiency regulated phosphate transporter AtPT2 were also conducted. The role of auxin as a mediator of root morphogenetic changes by Al was evaluated by using the auxin-signaling mutants tir1, tir1 afb2 afb3, and arf7 arf19.

Results

Al inhibited primary root growth by affecting cell cycle progression and causing differentiation of cells in the root meristem. These effects were reduced in low phosphorus insensitive lpi1-3 and low phosphate resistant lpr1-1 lpr2-1 Arabidopsis mutants. Al also activated the expression of the low phosphate-induced P transporter AtPT2 in roots. Lateral root formation by Al decreased in tir1 afb2 afb3 while arf7 arf19 mutants were highly resistant to Al in both primary root inhibition and lateral root induction.

Conclusions

Our results suggest that lateral root formation in response to Al toxicity and P deficiency may involve common signaling mechanisms, while a pathway involving ARF7 and ARF19 is important for primary root growth inhibition by Al.  相似文献   

5.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   

6.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. We tested the hypothesis that wild-type Arabidopsis would acquire more phosphorus under phosphorus-limiting conditions than mutants that do not have the root hair response. The growth and phosphorus acquisition of wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under eight phosphorus treatments ranging from 0.4 mmol/m to 54 mmol/m phosphorus. At the lowest phosphorus treatment, all plants were small and showed severe phosphorus stress symptoms. At 1.5 mmol/m phosphorus, WS plants had greater shoot biomass, absolute growth rate, total phosphorus, and specific phosphorus absorption than the two root hair mutants. At the highest phosphorus treatment, there was no difference between genotypes in any of the parameters measured. We conclude that the response of increased root hair growth under low phosphorus availability in Arabidopsis is important in increasing phosphorus acquisition under phosphorus-limiting conditions.  相似文献   

7.
The developmental response of the Arabidopsis root system to low phosphorus (P) availability involves the reduction in primary root elongation accompanied by the formation of numerous lateral roots. We studied the roles of selected redox metabolites, namely, radical oxygen species (ROS) and ascorbic acid (ASC) in the regulation of root system architecture by different P availability. Rapidly growing roots of plants grown on P-sufficient medium synthesize ROS in root elongation zone and quiescent centre. We have demonstrated that the arrest of root elongation at low P medium coincides with the disappearance of ROS from the elongation zone. P-starvation resulted in a decrease in ascorbic acid level in roots. This correlated with a decrease in cell division activity. On the other hand, feeding P-deficient plants with ASC, stimulated mitotic activity in the primary root meristem and partly reversed the inhibition of root growth imposed by low P conditions. In this paper, we discuss the idea of the involvement of redox agents in the regulation of root system architecture under low P availability.Key words: ascorbic acid, phosphate deficiency, primary root, radical oxygen species, root growth, root system architecture  相似文献   

8.
Homogeneous low phosphorus availability was reported to regulate root architecture in Arabidopsis via auxin, but the roles of auxin in root architecture plasticity to heterogeneous P availability remain unclear. In this study, we employed auxin biosynthesis-, transport- and signalling-related mutants. Firstly, we found that in contrast to low P (LP) content in the whole medium, primary root (PR) growth of Arabidopsis was partially rescued in the medium divided into two parts: upper with LP and lower with high P (HP) content or in the reverse arrangement. The down part LP was more effective to arrest PR growth as well as to decrease density of lateral roots (DLR) than the upper LP, and effects were dependent on polar auxin transport. Secondly, we verified that auxin receptor TIR1 was involved in the responses of PR growth and lateral root (LR) development to P supply and loss of function of TIR1 inhibited LR development. Thirdly, effects of heterogeneous P on LRD in the upper part of PR was dependent on PIN2 and PIN4, and in the down part on PIN3 and PIN4, whereas density of total LRs was dependent on auxin transporters PIN2 and PIN7. Finally, heterogeneous P availability altered the accumulation of auxin in PR tip and the expression of auxin biosynthesisrelated genes TAA1, YUC1, YUC2, and YUC4. Taken together, we provided evidences for the involvement of auxin in root architecture plasticity in response to heterogeneous phosphorus availability in Arabidopsis.  相似文献   

9.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

10.
Plant root sensing and adaptation to changes in the nutrient status of soils is vital for long-term productivity and growth. Reactive oxygen species (ROS) have been shown to play a role in root response to potassium deprivation. To determine the role of ROS in plant response to nitrogen and phosphorus deficiency, studies were conducted using wild-type Arabidopsis and several root hair mutants. The expression of several nutrient-responsive genes was determined by Northern blot, and ROS were quantified and localized in roots. The monitored genes varied in intensity and timing of expression depending on which nutrient was deficient. In response to nutrient deprivation, ROS concentrations increased in specific regions of the Arabidopsis root. Changes in ROS localization in Arabidopsis and in a set of root hair mutants suggest that the root hair cells are important for response to nitrogen and potassium. In contrast, the response to phosphorus deprivation occurs in the cortex where an increase in ROS was measured. Based on these results, we put forward the hypothesis that root hair cells in Arabidopsis contain a sensing system for nitrogen and potassium deprivation.  相似文献   

11.
Root hairs confer a competitive advantage under low phosphorus availability   总被引:23,自引:3,他引:20  
Bates  Terence R.  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):243-250
Root hairs are presumably important in the acquisition of immobile soil resources such as phosphorus. The density and length of root hairs vary substantially within and between species, and are highly regulated by soil phosphorus availability, which suggests that at high nutrient availability, root hairs may have a neutral or negative impact on fitness. We used a root-hairless mutant of the small herbaceous dicot Arabidopsis thaliana to assess the effect of root hairs on plant competition under contrasting phosphorus regimes. Wildtype plants were grown with hairless plants in a replacement series design at high (60 m phosphate in soil solution) and low (1 m phosphate in soil solution) phosphorus availability. At high phosphorus availability, wildtype and mutant plants were equal in growth, phosphorus acquisition, fecundity and relative crowding coefficient (RCC). At low phosphorus availability, hairless plants accumulated less biomass and phosphorus, and produced less seed when planted with wildtype plants. Wildtype plants were unaffected by the presence of hairless plants in mixed genotype plantings. Wildtype plants had RCC values greater than one while hairless plants had RCC values less than one. We conclude that root hairs increase the competitiveness of plants under low phosphorus availability but do not reduce growth or competitiveness under high phosphorus availability.  相似文献   

12.
The hypothesis that ethylene participates in the regulation of root hair development by phosphorus availability in Arabidopsis thaliana was tested by chemically manipulating ethylene synthesis and response and with ethylene-insensitive mutants. Low phosphorus-induced root hair development could be mimicked by adding the ethylene precursor, 1-aminocyclopropane-1-carboxylate (ACC), to high phosphorus media, and inhibited by adding ethylene inhibitors to low phosphorus media. Ethylene-insensitive mutants showed a reduced response to low phosphorus, indicating ethylene involvement in root hair responses to phosphorus deficiency. To dissect the nature of this involvement, the morphological and anatomical changes associated with increased root hair density were investigated. Growth in low phosphorus resulted in smaller, more numerous cortical cells, resulting in a larger number of root hair-bearing epidermal cell files. Cortical cell number was not affected by ethylene inhibitors, ACC, or mutations reducing ethylene sensitivity in roots grown with low phosphorus, indicating that ethylene does not participate in this response. The exception was the eir1 mutation, which strongly reduced this change in radial anatomy, supporting a role for polar auxin transport in this process. Trichoblast cell length was reduced by low phosphorus availability in all genotypes, but even more so for ein2-1 and ein4. The proportion of epidermal cells forming hairs and root hair length were reduced in ethylene-insensitive mutants, especially in the presence of low phosphorus. These results demonstrate multiple effects of low phosphorus from the earliest stages of root hair development, and cross-talk between ethylene and phosphorus in the control of a subset of the low phosphorus effects, concentrating on those later in development.  相似文献   

13.
Phosphorus availability is often limiting for plant growth. However, little is known of the pathways and mechanisms that regulate phosphorus (P) uptake and distribution in plants. We have developed a screen based on the induction of secreted root acid phosphatase activity by low‐P stress to identify mutants of Arabidopsis thaliana with defects in P metabolism. Acid phosphatase activity was detected visually in the roots of A. thaliana seedlings grown in vitro on low‐P medium, using the chromogenic substrate, 5‐bromo‐4‐chloro‐3‐indolyl‐phosphate (BCIP). In low‐P stress conditions the roots of wild‐type plants stained blue, as the induced root acid phosphatase cleaved BCIP to release the coloured product. Potential mutants were identified as having white, or pale blue, roots under these conditions. Out of approximately 79 000 T‐DNA mutagenised seedlings screened, two mutants with reduced acid phosphatase staining were further characterised. Both exhibited reduced growth and differences in their P contents when compared to wild‐type A. thaliana. The mutant with the most severe phenotype, pho3, accumulated high levels of anthocyanins and starch in a distinctive visual pattern within the leaves. The phenotypes of these mutants are distinct from two previously identified phosphorus mutants (phol and pho2) and from an acid phosphatase deficient mutant (pupl) of A. thaliana. This suggested that the screening method was robust and might lead to the identification of further mutants with the potential for increasing our understanding of P nutrition.  相似文献   

14.
We characterized the response of root hair density to phosphorus (P) availability in Arabidopsis thaliana. Arabidopsis plants were grown aseptically in growth media with varied phosphorus concentrations, ranging from 1 mmol m3 to 2000 mmol m3 phosphorus. Root hair density (number of root hairs per mm of root length) was analysed starting at 7 d of growth. Root hair density was highly regulated by phosphorus availability, increasing significantly in roots exposed to low-phosphorus availability. The initial root hairs produced by the radicle were not sensitive to phosphorus availability, but began to respond after 9 d of growth. Root hair density was about five times greater in low phosphorus (1 mmol m3) than in high phosphorus (1000 mmol m3) media. Root hair density decreased logarithmically in response to increasing phosphorus concentrations within that range. Root hair density also increased in response to deficiencies of several other nutrients, but not as strongly as to low phosphorus. Indoleacetic acid (IAA), the auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (CMPA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the ethylene synthesis inhibitor amino-oxyacetic acid (AOA) all increased root hair density under high phosphorus but had very little effect under low phosphorus. Low phosphorus significantly changed root anatomy, causing a 9% increase in root diameter, a 31% decrease in the cross-sectional area of individual trichoblasts, a 40% decrease in the cross-sectional area of individual atrichoblasts, and 45% more cortical cells in cross-section. The larger number of cortical cells and smaller epidermal cell size in low phosphorus roots increased the number of trichoblast files from eight to 12. Two-thirds of increased root hair density in low phosphorus roots was caused by increased likelihood of trichoblasts to form hairs, and 33% of the increase was accounted for by changes in low phosphorus root anatomy resulting in an increased number of trichoblast files. These results show that phosphorus availability can fundamentally alter root anatomy, leading to changes in root hair density, which are presumably important for phosphorus acquisition.  相似文献   

15.
A common response to low phosphorus availability is increased relative biomass allocation to roots. The resulting increase in root:shoot ratio presumably enhances phosphorus acquisition, but may also reduce growth rates by diverting carbon to the production of heterotrophic rather than photosynthetic tissues. To assess the importance of increased carbon allocation to roots for the adaptation of plants to low P availability, carbon budgets were constructed for four common bean genotypes with contrasting adaptation to low phosphorus availability in the field ("phosphorus efficiency"). Solid-phase-buffered silica sand provided low (1 microM), medium (10 microM), and high (30 microM) phosphorus availability. Compared to the high phosphorus treatment, plant growth was reduced by 20% by medium phosphorus availability and by more than 90% by low phosphorus availability. Low phosphorus plants utilized a significantly larger fraction of their daytime net carbon assimilation on root respiration (c. 40%) compared to medium and high phosphorus plants (c. 20%). No significant difference was found among genotypes in this respect. Genotypes also had similar rates of P absorption per unit root weight and plant growth per unit of P absorbed. However, P-efficient genotypes allocated a larger fraction of their biomass to root growth, especially under low P conditions. Efficient genotypes had lower rates of root respiration than inefficient genotypes, which enabled them to maintain greater root biomass allocation than inefficient genotypes without increasing overall root carbon costs.  相似文献   

16.
Low phosphorus availability (low P) often delays flowering and maturity in annual plants, while abiotic stress generally accelerates flowering and maturity. The utility of this response is unknown. We hypothesize that phenological delay in low P is beneficial by permitting more time for phosphorus acquisition and utilization. We grew seven genotypes of Arabidopsis thaliana with contrasting phenology in high and low P. Low P delayed bolting and maturity in all genotypes. Low P decreased root length, but not root-length duration (the integral of root length over time), because phenological delay allowed low-P plants to compensate for shorter root length. Root-length duration was correlated with phosphorus accumulation. Leaf phosphorus duration (the integral of leaf phosphorus over time) was correlated with reproductive biomass, indicating the utility of increased phosphorus utilization. Phenological delays accounted for up to 30% of biomass production when low-P plants were compared to models of plants with no delays. These results support the hypothesis that phenological delay in low P is adaptive and leads to increased phosphorus acquisition and utilization. Because low P conditions are prevalent, understanding the utility of this response could be useful in crop breeding and in predicting plant responses to global climate change.  相似文献   

17.
Effects on leaf growth, biomass accumulation and root morphogenesis associated with the establishment of phosphorus (P) deficiency were studied on maize in order to test the hypothesis that the root system response can be accounted for by the effect of P deficiency on the carbon budget of the plant. P deprivation had a large and rapid negative effect on leaf expansion. For 7 d after P deprivation, the total dry matter production per plant was almost fully accounted for by the effect of P starvation on leaf growth and its subsequent effect on photosynthetically active radiation (PAR) interception. No strong effect of P deficiency was observed on the radiation use efficiency during this first period, although it was reduced thereafter. Root growth was slightly enhanced a few days after P starvation, but strongly reduced thereafter. The elongation rate of axile roots was maintained throughout the experiment, whereas emergence of new axile roots and elongation of first-order laterals were drastically reduced. The density of first-order laterals was not severely affected. These morphological responses are very similar to what is observed when root growth is limited by the availability in carbohydrates. The results are therefore compatible with the hypothesis that P deficiency mainly affects the root system morphology through its effect on the carbon budget of the plant with no additional specific effect of P deficiency on root morphogenesis. The drastic and early reduction of shoot growth after P deprivation may explain that more carbohydrates were available for root growth which was observed a few days after P starvation and reported by several authors. Later on, however, because of the reduced leaf area of P-deprived plants, their capacity to intercept light was severely reduced so that root growth was finally reduced.Keywords: Zea mays L., maize, phosphorus, root, root morphogenesis.   相似文献   

18.

Background

Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources.

Scope

This review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots.

Conclusions

The role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.  相似文献   

19.
When growing under limiting phosphate (P) conditions, Arabidopsis thaliana plants show dramatic changes in root architecture, including a reduction in primary root length, increased formation of lateral roots and greater formation of root hairs. Here we report that primary root growth inhibition by low P is caused by a shift from an indeterminate to a determinate developmental program. In the primary root, the low P-induced determinate growth program initiates with a reduction of cell elongation followed by the progressive loss of meristematic cells. At later stages, cell proliferation ceases and cell differentiation takes place at the former cell elongation and meristematic regions of the primary root. In low P, not only the primary but also almost all mature lateral roots enter the determinate developmental program. Kinetic studies of expression of the cell cycle marker CycB1;1:uidA and the quiescent center (QC) identity marker QC46:GUS showed that in low P conditions, reduction in proliferation in the primary root was preceded by alterations in the QC. These results suggest that in Arabidopsis, P limitation can induce a determinate root developmental program that plays an important role in altering root system architecture and that the QC could act as a sensor of environmental signals.  相似文献   

20.
The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates primordia emergence through increased accumulation of auxin or change in sensitivity to auxin in the primordia. Both the strong effect of 2,3,5-triiodobenzoic acid and the phenotype of the auxin-transport mutants (aux1, eir1) suggest that low P availability modifies local auxin concentrations within the root system through changes in auxin transport rather than auxin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号