首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The spores ofAlternaria andCladosporium are present throughout the year in the atmosphere of León (NW Spain), although they show an important seasonal variation. To understand the relationship between the number of spores and climatic factors,Alternaria andCladosporium spores counts for January 1994 to December 1995 were examined by means of correlation analyses. The results of weekly samples of both years showed that the spores concentration of two taxa are significantly and positively correlated with maximum and minimum temperature and sunshine hours and negatively with relative humidity. The statistical analysis of daily samples generally showed the same results. In the hourly distribution of spore concentrations we can see a similar behaviour ofAlternaria andCladosporium, with most spores collected in the 12–14 h period.  相似文献   

2.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   

3.
 Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens. Received: 14 October 1996 / Revised: 17 February 1997 / Accepted: 28 February 1997  相似文献   

4.
Aspergillus/Penicillium spore concentrations have been monitored in Derby since 1970 using a volumetric spore trap, with full year data from 1991. In addition a short comparative study with the indoor air was undertaken at two local houses in 1994 and 1996. Aspergillus/Penicillium spores were present in the Derby air throughout the year and often reached maximum monthly cumulative concentrations in the autumn, although they were occasionally the dominant spores in the winter when total spore concentrations were low. Very high daily concentrations could occur at any time of year with a count of over 5000 recorded. Peak days in the autumn and winter of 2002–2003 were examined on a two hourly basis showing higher concentrations in the middle of the day. There was a positive correlation of cumulative monthly Aspergillus/Penicillium totals with maximum temperature. Indoor data from the two houses was examined on a daily basis and compared with simultaneously sampled outdoor daily spore concentrations. The elevated Aspergillus/Penicillium spore levels found in the older of the two houses occurred on all of the days sampled. Compared to the modern house, the Aspergillus/Penicillium spore concentrations in the old house represented a much higher percentage of the total spore count than in the modern one. The correlation between outdoor Aspergillus/Penicilliumspore concentrations and the indoor air of the old house was 0.62, whereas in the modern house it was 0.31. Peak hourly samples of Aspergillus/Penicillium spore counts occurred at times of greatest activity.  相似文献   

5.
Annual variations in the abundance ofAlternaria spores were related to the length of the spore period for data from Murcia (southeastern Spain). To understand the relationship between the number of spores and climatic factors,Alternaria spore counts for March 1993 to February 1994 were examined by means of correlation and regression analyses with fourteen different weather parameters. The results indicated that there was a tendency forAlternaria spore concentrations to increase with increases in temperature, wind speed and hours of sunshine. Negative correlations were observed with air pressure, wind direction and humidity. Theoretical curves forAlternaria spore counts are given in relation to temperatures during the period studied.  相似文献   

6.
The aerobiological behaviour of Fagaceae in Trieste and the correlations with the meteorological parameters were examined. Airborne pollen grains of Castanea, Fagus and Quercus were collected from 1990 to 2003 using a Hirst type spore trap. The main pollen season (MPS) takes place in April and May for Quercus and Fagus, in June and July for Castanea. The highest values occur in year 1993 for Quercus, in 1998 for Castanea and in 1992 for Fagus. The Fagaceae content of the air is mainly due to Quercus and Castanea pollen, Fagus usually having a scarce pollen shedding in Trieste. The highest counts of Fagaceae pollen grains are found from late April to mid May and are mainly due to the pollen shedding of oaks. The cumulative counts vary over the years, with a mean value of 2.719 pollen grains, a lowest total of 1.341 in 2002 and a highest total of 4.704 in 1993. No positive nor negative long-term trends in pollen shedding are found. No cyclic variations were observed. Spearman’s correlation was used to establish the relationship between the daily pollen counts and the daily meteorological data. Daily pollen concentrations present sometimes positive correlation with temperature, negative with rainfall and wind speed, and no correlation with humidity. Fagus and Quercus start dates result positively correlated between themselves. Significant correlations are found between the start of MPS and the mean and maximum temperature in March for Fagus and Quercus, and May for Castanea.  相似文献   

7.
An assumption that a positive relationship exists between temperature and herbivorous fish grazing rates in coral reef environments has been used to explain seasonal and latitudinal trends in herbivore pressure. However, this assumption has not been systematically quantified over short-term (hours–days) changes in temperature, avoiding the confounding influences that can occur on seasonal or latitudinal scales. This study measured grazing activities of the pan Indo-Pacific parrotfish Scarus ghobban over short-term changes in temperature in upwelling and non-upwelling environments on the Pacific coast of Panamá. Individual juvenile fish were followed over naturally varying temperatures to determine their bite rates (bites min−1), the foray frequency (forays min−1) and bites per foray. In the upwelling environment, there was a significant positive correlation between temperature and bite rate (R Partial = 0.63, P < 0.0001) and there was a marked fourfold change in bite rates over the range of temperatures encountered in the study (21.2–29.4°C). Bites per foray were also positively correlated to temperature (R partial = 0.27, P < 0.0001), and tide height (R partial = 0.26, P < 0.001), whilst foray frequency was positively correlated to temperature (R partial = 0.63, P < 0.0001), but negatively to tide height (R partial = −0.31, P < 0.0001). The effect of temperature on grazing rates may explain differences in herbivore pressure across different thermal environments and may be a factor contributing to algal biomass increases in low-temperature coral reef environments.  相似文献   

8.
The effects of invasive macrophytes, water level fluctuations and predation on freshwater unionids Pyganodon grandis and Utterbackia imbecillis were studied in three small impoundments in Northeastern Texas in 2003–2005. Mussel density was sampled with quadrats. Mortality, associated with the water level fluctuations and predation, was estimated by collecting dead shells on the shore at about two month intervals. In two ponds, horizontal distribution of unionids was limited by dense beds of invasive and noxious macrophytes (mainly Eurasian watermilfoil Myriophyllum spicatum and American lotus Nelumbo lutea): mussel densities were significantly lower in these macrophyte beds (P < 0.001). In the third pond with the lowest density of macrophytes (stonewort Chara sp.), unionids were distributed more evenly, and the average unionid biomass was the highest among all ponds studied. Vertical distribution of unionids in all ponds was likely limited by low oxygen at depth >2 m. The total amount of shells found on the shore per year varied from 0.1% to 28% of the total population in the pond and was negatively correlated with water level (r = −0.72 to −0.81, P < 0.005). Mammalian predators consumed up to 19% of the total unionid population and predation was facilitated by water level fluctuations. Handling editor: K. Martens  相似文献   

9.
Li K  Zheng T  Tian Y  Xi F  Yuan J  Zhang G  Hong H 《Biotechnology letters》2007,29(4):525-530
When Bacillus licheniformis was administered to the white shrimp, Litopenaeus vannamei, although the total bacterial counts in the intestinal tract of the shrimp remained constant, Vibrio numbers significantly decreased (P < 0.05). Haemocyte counts together with phenoloxidase and superoxide dismutase activities of the shrimp were significantly higher (P < 0.05) in treatments than in the control. Thus, administration of B. licheniformis can improve the white shrimp's intestinal microflora and its immune ability.  相似文献   

10.
Recolonization of epibiotic flora and fauna in two fringing Sonneratia alba reforestation plots was investigated and compared to a natural mangrove stand and a denuded site in Gazi Bay, Kenya. The reforested sites differed with respect to land history and planting density. Habitat availability in the form of pneumatophore surface differed among forested sites (P<0.001), and between landward and seaward zones (P<0.05). Eighteen algal species were found in the natural area compared to 23 and 10 in replanted sites. Only one species was encountered in the denuded area. SIMPER analysis distinguished Enteromorpha ramulosa, Polysiphonia sp., Hypnea sp. and Caloglossa leprieuri as the main algal species responsible for differences between sites. Algal biomass was positively correlated to pneumatophores area (P<0.001). Total algal biomass differed markedly between forested sites: 1.4 (matrix replantation), 28.6 (natural stand) and 44.3 g m−2 (integrated replantation) in the seaward zones. The matrix replantation showed strong differences in algal community assemblages compared to the other forested sites, and this site also had significantly lower biomass of sessile benthic fauna (P<0.001). Statistical differences in algal (P<0.01) and sponge (P<0.05) community composition between landward and seaward zones were observed in all sites and trunk fouling fauna was distinctly different between sites. Reasons for the above patterns are discussed and it is suggested that zonation patterns affecting pneumatophore surface and inundation time, in combination with proximity of sites to natural seeding areas, are the most likely explanations for observed patterns of epibiotic community distribution in this study.  相似文献   

11.
Seven-day volumetric spore samplers were installed in pear orchards of northern Italy, in the years between 1993 and 2002, and operated continuously during the development of brown spot epidemics (mid-April–mid-August), caused by Stemphylium vesicarium. Aerial concentration of conidia was recorded at 2 h intervals to study their diurnal and seasonal patterns and the influence of weather conditions. The diurnal periodicity of aerial conidia showed a peak around midday and low counts in the dark. The increase in spore concentration was significantly correlated with the reduction of relative humidity and wetness in early morning, and the increase of wind in late morning and afternoon. Conidia of S. vesicarium became easily airborne to form a regular component of the air-spora in pear orchards, while ascospores were caught only sporadically. Differences between years concerned total spore counts and numbers of peaks (defined as days with more than 30 conidia/m3 air per day). Periods with highest spore counts occurred in late-May to early-June (in 2 years), mid to end of June (5 years), or after mid-July (3 years). There was a significant correlation between spore peaks and days with favourable weather conditions, defined as days with air temperature between 15 and 25°C and high humidity, particularly a wet period longer than 10 h. Occurrence of one or more consecutive days with favourable weather conditions determined an increase in the airborne concentration of conidia, which usually lasted some days and then decreased.  相似文献   

12.
The occurrence of mycotic agents was investigated by hair-brush technique on the coat of 162 naturalized coypus (Myocastor coypus) and 64 indigenous brown rats (Rattus norvegicus) originating from the same protected area in Central Italy. The isolates from positive coypus (29.6%) were identified as Microsporum gypseum (14.8%), Trichophyton terrestre (9.8%), Alternaria sp. (3.7%), Trichophyton mentagrophytes (2.5%), Cladosporium sp. (1.8%), Scopulariopsis sp. (1.2%), and Chrysosporium keratinophilum (0.6%), whereas the isolates from positive rats (46.7%) were identified as M. gypseum (28.1%), T. mentagrophytes (12.5%), Chrysosporium tropicum and T. terrestre (3.1% each), and Chrysosporium inops (1.6%). Statistically, brown rats were more likely to harbor fungal agents (P < 0.05) on their coat than coypus, especially T. mentagrophytes (P < 0.01) and M. gypseum (P < 0.05). No positive animal showed dermatological lesions. The present results are the first providing basic information on the coat’s mycoflora of a wild coypu population. It is concluded that the coypu, an allochthonous rodent in Italy, can play a role as natural animal reservoir of dermatophytes and as carrier of keratinophilic and saprophytic fungi within its new habitat, though to a lesser extent than indigenous rats. Therefore, people who are exposed to the risk of contact with the coat of rats and coypus should take all the cautions needed to protect themselves from mycotic agents potentially transmissible to humans.  相似文献   

13.
Williams RS  Lincoln DE  Norby RJ 《Oecologia》2003,137(1):114-122
Predicted increases in atmospheric CO2 and global mean temperature may alter important plant-insect associations due to the direct effects of temperature on insect development and the indirect effects of elevated temperature and CO2 enrichment on phytochemicals important for insect success. We investigated the effects of CO2 and temperature on the interaction between gypsy moth (Lymantria dispar L.) larvae and red maple (Acer rubrum L.) saplings by bagging first instar larvae within open-top chambers at four CO2/temperature treatments: (1) ambient temperature, ambient CO2, (2) ambient temperature, elevated CO2 (+300 l l-1 CO2), (3) elevated temperature (+3.5°C), ambient CO2, and (4) elevated temperature, elevated CO2. Larvae were reared to pupation and leaf samples taken biweekly to determine levels of total N, water, non-structural carbohydrates, and an estimate of defensive phenolic compounds in three age classes of foliage: (1) immature, (2) mid-mature and (3) mature. Elevated growth temperature marginally reduced (P <0.1) leaf N and significantly reduced (P <0.05) leaf water across CO2 treatments in mature leaves, whereas leaves grown at elevated CO2 concentration had a significant decrease in leaf N and a significant increase in the ratio of starch:N and total non-structural carbohydrates:N. Leaf N and water decreased and starch:N and total non-structural carbohydrates:N ratios increased as leaves aged. Phenolics were unaffected by CO2 or temperature treatment. There were no interactive effects of CO2 and temperature on any phytochemical measure. Gypsy moth larvae reached pupation earlier at the elevated temperature (female =8 days, P <0.07; male =7.5 days, P <0.03), whereas mortality and pupal fresh weight of insects were unrelated to either CO2, temperature or their interaction. Our data show that CO2 or temperature-induced alterations in leaf constituents had no effect on insect performance; instead, the long-term exposure to a 3.5°C increase in temperature shortened insect development but had no effect on pupal weight. It appears that in some tree-herbivorous insect systems the direct effects of an increased global mean temperature may have greater consequences for altering plant-insect interactions than the indirect effects of an increased temperature or CO2 concentration on leaf constituents.  相似文献   

14.
Age-related consumption and longevity were monitored in the laboratory for adultA. ipsilon fed either a 1M sucrose solution or water. An additional group was completely starved. Adults consumed sucrose solution and water just after eclosion; the percentage feeding daily and the mean daily consumption for females and males fed sucrose solution declined with time, whereas the percentage feeding daily and the mean daily consumption of those fed water increased with time. Total consumption was significantly higher for those fed sucrose solution (P<0.01) because they lived longer, but consumption per day averaged over the entire adult stage was not significantly different between those fed sucrose solution and those fed water (P>0.05). Mean longevity was significantly extended for females and males fed sucrose solution over those fed water or starved (P<0.01). Moreover, consumption of either fluid was significantly correlated with extended longevity in all groups (P<0.05). These data on fluid consumption by adultA. ipsilon are discussed relative to posteclosion migratory activities.  相似文献   

15.
A solid-state fermentation (SSF) of a mixture of porcine blood and wheat bran with a ratio of 8:1 by Aspergillus oryzae was investigated. Water content, pH, crude protein, heme and total iron, free amino acids (FAA) and total fatty acids (TFA) of the fermented mixture were determined at 0, 40, 80 and 120 h, respectively, and protein hydrolysis were analyzed with SDS-PAGE accordingly. The results showed that, during the fermentation, water contents and pH decreased significantly (P < 0.05) from 68.33% to 59.94%, 7.18% to 4.48%, respectively. Heme iron content changed slightly (P > 0.05). With the degradation of large protein molecules, free amino acids in the mixture increased from 872.83 mg l−1 to 11560.94 mg l−1 (P < 0.05). Content of free isoleucine, methionine and cystine, deficient in fresh porcine blood increased (P < 0.05) after fermentation. Percentages of saturated fatty acids such as C14:0, C17:0 and C18:0 in the total fatty acids decreased significantly (P < 0.05), and those of polyunsaturated fatty acids C18:1, C18:2, C18:3, C20:1 and C20:2 increased significantly from 27.06% to 47.90% (P < 0.05). The results indicated that Aspergillus oryzae could ferment porcine blood and bran mixture and change its chemical and nutrient composition.  相似文献   

16.
To determine what factors limit the growth of wild Fritillaria cirrhosa and Fritillaria delavayi in field conditions, we investigated diurnal changes of the net photosynthetic rate (P N) and the correlation between P N and various environmental factors. Parameters of chlorophyll (Chl) fluorescence were evaluated to test whether ecological fragility caused the extinction of wild F. cirrhosa and F. delavayi. Our study reveals for the first time that F. cirrhosa and F. delavayi did not encounter significant stress under field conditions. A small reduction in maximum photochemical efficiency was observed under high irradiance. The maximum P N of F. cirrhosa was 30 % higher than F. delavayi (p<0.05), and a similar difference was observed for apparent quantum yield (27.3 %, p<0.01). F. delavayi was better adapted to a wide range of irradiances and high environmental temperature. Correlation between P N and environmental factors (without considering the effects of interactions among environmental factors on P N) using leaves of F. cirrhosa revealed that the three primary influencing factors were air pressure (p<0.01), relative humidity (p<0.01), and soil temperature (p<0.05). In F. delavayi, the influencing factors were relative humidity (p<0.01), soil temperature (p<0.05), CO2 concentration (p<0.05), and air pressure (p<0.05). Path analysis (considering effects among environmental factors on P N) showed that air temperature (negative correlation), photosynthetic photon flux density (PPFD) and relative humidity were the three primary limiting factors influencing the growth of F. cirrhosa. For this species, relative humidity reacted indirectly with air pressure, which was reported singularly in other species. Limiting growth factors for F. delavayi were PPFD, air pressure (negative correlation), soil temperature (negative correlation) and air temperature (negative correlation).  相似文献   

17.
Summary The effects of vesicular-arbuscular mycorrhiza (VAM) on the growth and phosphorus uptake of cocoa seedlings (Theobroma cacao L.) grown for 100 days in polythene bags, were studied at five levels of phosphorus fertilization in both steamed and unsterile Bungor Series soil (a fine clayey, kaolinitic isohyperthermic Typic Paleudult). The cocoa seedlings responded well to phosphorus fertilization and mycorrhizal treatments. Plants inoculated with VAM fungi (Gigaspora spp.) gave the most vigorous growth and higher phosphorus in the leaf tissues in unsterile soil compared to plants grown in steamed soil. However, the mycorrhizal effect was significantly more pronounced (P<0.01) in plants grown in steamed than in unsterile soil. High levels of phosphorus application depressed mycorrhizal development. Phosphorus fertilizer applied at the rates of 250 and 500 ug g−1 soil gave maximum root colonization and spore counts in both soil types used.  相似文献   

18.
Very little is known in the UK about long term trends of theAlternaria spore although it is known to trigger asthma. It hasrecently become apparent that Alternaria spore levels areincreasing in Derby and a detailed study of Alternaria wasundertaken to investigate the increase in numbers, seasonal variationand diurnal periodicity. The seasonal (June—October)Alternaria spore concentrations show a distinct upward trendand there is evidence of an earlier seasonal start and an increase inthe seasonal duration. There has been a dramatic rise in the number ofdays with an Alternaria spore count above 50 spores per cubicmetre, with the peak daily count usually occurring in August butoccasionally in late July or early September. August generally has thehighest monthly total and for 1991–1998 there was a positivecorrelation with monthly rainfall and average temperature. Day to dayspore levels show a positive correlation between Alternariaspore concentrations and maximum temperature but a slight negativecorrelation with daily rainfall. The peak time for spore capture is14.00–22.00, and more than half the daily Alternariacatch is caught between 18.00 and 24.00 hours. The upward trend inAlternaria spore concentrations may be responsible forincreasing levels of respiratory disease, especially during harvesttime.  相似文献   

19.
Summary This paper reports about the occurence ofFusarium- andDidymella spores in the air of Essen/FRG. During the spore season 1990, the spore concentration was measured on several days with a volumetric pollen trap by hourly analysis. The calculated amount of spores per hour is compared to the data of a pluviometer and the values of the relative humidity during the same period.The occurence of both spore types in the air and high relative humidity (>80%) are correlated in a highly significant way (P<0.001). The dispersion of spores starts when rain begins or directly after the precipitation.Didymella reaches higher concentrations thanFusarium in the air (Maximum values:Didymella 30000 spores/m3,Fusarium only 800 spores/m3). During the emission of the spores the temperature varied between 10°C und 20°C degrees. Didymella andFusarium must be an important allergenic source in the outdoor area, because of their allergen-loaded biological aerosols. The question of providing well defined extracts ofDidymella exitialis is given to the pharmaceutical industry.  相似文献   

20.
Alternaria is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we constructed predictive models for the fungal spore circulation in Szczecin, Poland. Monthly forecasting models were developed for the airborne spore concentrations of Alternaria, which is one of the most abundant fungal taxa in the area. Aerobiological sampling was conducted over 2004–2007, using a Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation; maximum and average wind speed; relative humidity; and maximum, minimum, average, and dew point temperature. The original factors as well as with lags (up to 3 days) were used as the explaining variables. Due to non-linearity and non-normality of the data set, the modelling technique applied was the artificial neural network (ANN) method. The final model was a split model with classification (spore presence or absence) followed by regression for spore seasons and log(x+1) transformed Alternaria spore concentration. All variables except maximum wind speed and precipitation were important factors in the overall classification model. In the regression model for spore seasons, close relationships were noted between Alternaria spore concentration and average and maximum temperature (on the same day and 3 days previously), humidity (with lag 1) and maximum wind speed 2 days previously. The most important variable was humidity recorded on the same day. Our study illustrates a novel approach to modelling of time series with short spore seasons, and indicates that the ANN method provides the possibility of forecasting Alternaria spore concentration with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号