首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60–91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu. We used for the first time surface plasmon resonance (SPR) analysis to dissect metal binding to specific sites of PrP domains and to determine binding kinetics in real time. A biosensor assay was established to measure the binding of PrP-derived synthetic peptides and recombinant PrP to nitrilotriacetic acid chelated divalent metal ions. We have identified two separate binding regions for binding of Cu to PrP by SPR, one in the octarepeat region and the second provided by His96 and His111, of which His96 is more essential for Cu coordination. The octarepeat region at the N-terminus of PrP increases the affinity for Cu of the full-length protein by a factor of 2, indicating a cooperative effect. Since none of the synthetic peptides covering the octarepeat region bound to Mn and recombinant PrP lacking this sequence were able to bind Mn, we propose a conformational binding site for Mn involving residues 91–230. A novel low-affinity binding site for Co(II) was discovered between PrP residues 104 and 114, with residue His111 being the key amino acid for coordinating Co(II). His111 is essential for Co(II) binding, whereas His96 is more important than His111 for binding of Cu(II).  相似文献   

2.
The conversion of the cellular prion protein (PrP(C)) into a misfolded isoform (PrP(TSE)) that accumulates in the brain of affected individuals is the key feature of transmissible spongiform encephalopaties (TSEs). Susceptibility to TSEs is influenced by polymorphisms of the prion gene suggesting that the presence of certain amino acid residues may facilitate the pathological conversion. In this work, we describe a quantitative, fast and reliable HPLC-MS method that allowed to demonstrate that in the brain of 109(Met/Ile) heterozygous bank voles infected with the mouse adapted scrapie strain 139A, there are comparable amounts of PrP(TSE) with methionine or isoleucine in position 109, suggesting that in this TSE model the two allotypes have similar rates of accumulation. This method can be easily adapted for the quantitative determination of PrP allotypes in the brain of other natural or experimental TSE models.  相似文献   

3.
Srikanth R  Wilson J  Burns CS  Vachet RW 《Biochemistry》2008,47(35):9258-9268
While the Cu(II) binding sites of the prion protein have been well studied under Cu-saturation conditions, the identity of the residues involved in coordinating Cu(II) at low stoichiometries and the order in which the binding sites load with Cu(II) remain unresolved. In this study, we have used two mass spectrometry based methods to gather insight into Cu(II)-prion binding under different stoichiometric loadings of Cu(II). The first method uses metal-catalyzed oxidation reactions to site specifically modify the residues bound to Cu(II) in solution, and the second method determines Cu binding sites based on the protection of His from modification by diethyl pyrocarbonate when this residue binds Cu(II) in solution. For both methods, the residues that are labeled by these reactions can then be unambiguously identified using tandem mass spectrometry. Upon applying these two complementary methods to a construct of the prion protein that contains residues 23-28 and 57-98, several noteworthy observations are made. Coordination of Cu(II) by multiple His imidazoles is found at 1:1 and 1:2 PrP:Cu(II) ratios. Notably, there appear to be four to seven isomers of this multiple histidine coordination mode in the 1:1 complex. Furthermore, our data clearly show that His96 is the dominant Cu(II) binding ligand, as in every isomer His96 is bound to Cu(II). The individual octarepeat binding sites begin to fill at ratios of 1:3 PrP:Cu(II) with no clear preference for the order in which they load with Cu(II), although the His77 octarepeat appears to saturate last. The existence of several "degenerate" Cu binding modes at low PrP:Cu(II) ratios may allow it to more readily accept additional Cu(II) ions, thus allowing PrP to transition from a singly Cu(II) bound state to a multiply Cu(II) bound state as a function of cellular Cu(II) concentration.  相似文献   

4.
The prion protein (PrP) is a cell-surface Cu(2+)-binding glycoprotein that when misfolded is responsible for a number of transmissible spongiform encephalopathies. Full-length PrP-(23-231) and constructs in which the octarepeat region has been removed, or His(95) and His(110) is replaced by alanine residues, have been used to elucidate the order and mode of Cu(2+) coordination to PrP-(23-231). We have built on our understanding of the appearance of visible CD spectra and EPR for various PrP fragments to characterize Cu(2+) coordination to full-length PrP. At physiological pH, Cu(2+) initially binds to full-length PrP in the amyloidogenic region between the octarepeats and the structured domain at His(95) and His(110). Only subsequent Cu(2+) ions bind to single histidine residues within the octarepeat region. Ni(2+) ions are used to further probe metal binding and, like Cu(2+), Ni(2+) will bind individually to His(95) and His(110), involving preceding main chain amides. Competitive chelators are used to determine the affinity of the first mole equivalent of Cu(2+) bound to full-length PrP; this approach places the affinity in the nanomolar range. The affinity and number of Cu(2+) binding sites support the suggestion that PrP could act as a sacrificial quencher of free radicals generated by copper redox cycling.  相似文献   

5.
There is increasing evidence that soluble oligomers of misfolded protein may play a role in the pathogenesis of protein misfolding diseases including the transmissible spongiform encephalopathies (TSE) where the protein involved is the prion protein, PrP. The effect of oxidation on fibrillation tendency and neurotoxicity of different molecular variants of the prion peptide PrP106-126 was investigated. It was found that methionine oxidation significantly reduced amyloid fibril formation and proteinase K resistance, but it did not reduce (but rather increase slightly) the neurotoxicity of the peptides in vivo (electroretinography after intraocular injections in mice) and in vitro (in primary neuronal cultures). We furthermore found that the bovine variant of PrP106-126, containing only one methionine residue, showed both reduced fibril forming capacity and in vivo and in vitro neurotoxicity. The findings imply (I) that there is not a simple relation between the formation of amyloid fibrils and neurotoxicity of PrP106-126 derived peptides, (II) that putative, soluble, non-amyloid protofibrils, presumed to be present in increased proportions in oxidized PrP106-126, could play a role in the pathogenesis of TSE and III) that the number of methionine residues in the PrP106-126 peptide seems to have a pivotal role in determining the physical and biological properties of PrP106-126.  相似文献   

6.
The coordination properties of cyclic octapeptides with multi-His motif: c(His-Gly-His-Xaa-His-Gly-His-Xaa) where Xaa = Asp or Lys, were investigated. The binding abilities of this peptides towards Cu(II) ions were studied by using different analytic methods as: potentiometry, spectroscopy and mass spectrometry. The obtained results show that the studied peptides in physiological related pH prefer formation of the species with the {4NIm} binding mode. The efficiency of Cu(II) binding depends on additional side chain groups Asp or Lys. Additionally the analysis of results for His containing cyclopeptides with different numbers of amino acid residues in cyclopeptide ring e.g. four, eight shows that in higher pH in both cases the binding by four amide nitrogens is not observed in the case of α-amino acid peptides.  相似文献   

7.
The prion protein (PrP) is a Cu2+ binding cell surface glyco-protein. Misfolding of PrP into a beta-sheet rich conformation is associated with transmissible spongiform encephalopathies. Here we use Ni2+ as a diamagnetic probe to further understand Cu2+ binding to PrP. Like Cu2+, Ni2+ preferentially binds to an unstructured region between residues 90 and 126 of PrP, which is a key region for amyloidogenicity and prion propagation. Using both 1H NMR and visible-circular dichroism (CD) spectroscopy, we show that two Ni2+ ions bind to His96 and His111 independently of each other. 1H NMR indicates that both Ni2+ binding sites form square-planar diamagnetic complexes. We have previously shown that Cu2+ forms a paramagnetic square-planar complex in this region, suggesting that Ni2+ could be used as a probe for Cu2+ binding. In addition, competition studies show that two Cu2+ ions can displace Ni2+ from these sites. Upon Ni2+ addition 1H NMR changes in chemical shifts indicate the imidazole ring and amide nitrogen atoms to the N terminus of both His96 and His111 act as coordinating ligands. Use of peptide fragments confirm that PrP(92-96) and PrP(107-111) represent the minimal binding motif for the two Ni2+ binding sites. Analysis of Cu2+ loaded visible-CD spectra show that as with Ni2+, PrP(90-115) binds two Cu2+ ions at His96 and His111 independently of each other. Visible CD studies with PrP(23-231Delta51-90), a construct of PrP(23-231) with the octarepeat region deleted to improve solubility, confirm binding of Ni2+ to His96 and His111 in octarepeat deleted PrP(23-231). The structure of the Cu/Ni complexes is discussed in terms of the implications for prion protein function and disease.  相似文献   

8.
Oxidative stress is believed to play a central role in the pathogenesis of prion diseases, a group of fatal neurodegenerative disorders associated with a conformational change in the prion protein (PrP(C)). The precise physiological function of PrP(C) remains uncertain; however, Cu(2+) binds to PrP(C) in vivo, suggesting a role for PrP(C) in copper homeostasis. Here we examine the oxidative processes associated with PrP(C) and Cu(2+). (1)H NMR was used to monitor chemical modifications of PrP fragments. Incubation of PrP fragments with ascorbate and CuCl(2) showed specific metal-catalyzed oxidation of histidine residues, His(96/111), and the methionine residues, Met(109/112). The octarepeat region protects His(96/111) and Met(109/112) from oxidation, suggesting that PrP(90-231) might be more prone to chemical modification. We show that Cu(2+/+) redox cycling is not 'silenced' by Cu(2+) binding to PrP, as indicated by H(2)O(2) production for full-length PrP. Surprisingly, although detection of Cu(+) indicates that the octarepeat region of PrP is capable of reducing Cu(2+) even in the absence of ascorbate, H(2)O(2) is not generated unless ascorbate is present. Full-length PrP and fragments cause a dramatic reduction in detectable hydroxyl radicals in an ascorbate/Cu(2+)/O(2) system; however, levels of H(2)O(2) production are unaffected. This suggests that PrP does not affect levels of hydroxyl radical production via Fentons cycling, but the radicals cause highly localized chemical modification of PrP(C).  相似文献   

9.
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.  相似文献   

10.
The prion protein (PrPc) is a cuproprotein implicated in a number of human neurodegenerative diseases. Although many physiological functions have been ascribed to PrP, its potential to act as a neuronal antioxidant, based in part on its copper binding ability, is controversial and unresolved. A number of studies have shown that copper bound to PrPc is not redox silent, and recent data shows that the Cu(II) sites at histidines 96 and 111 display reversible electrochemistry. Reversible electrochemistry implies redox cycling whilst the metal remains bound and with the absence of permanent oxidation or reduction of the protein. Despite this indirect evidence of Cu(I) binding to PrP, the nature of the Cu(I) binding site/s is unclear, although previous extended X-ray absorption fine structure (EXAFS) data has implicated methionines in the Cu(I) binding site. Using spectroscopic techniques we find that the PrP region encompassing histidines 96 and 111 can bind a Cu(I) ion in a site comprising His 96, His 111, Met 109 and Met 112. The four-coordinate (His)2(Met)2 Cu(I) site has a Kd = 10−15–10−12 M indicative of high affinity. Mutation of histidine residues reduces the Cu(I) affinity. Although alluding to the fact the PrP could act in a direct superoxide dismutase-like fashion, the Cu(I)–PrP(91–124) site and affinity is comparable to that observed for bacterial periplasmic Cu(I) transporters.  相似文献   

11.
One of symptoms of transmissible spongiform encephalopathies is associated with the transformation of normal cellular prion protein, PrP, in its amyloid isoform resistant to proteolytic cleavage. The present study shows that interaction with copper ions converts both monomeric recombinant scrapie-susceptible PrP-VRQ and scrapie-resistant PrP-ARR variants into protease-resistant soluble oligomers with amyloid characteristics -- dominant beta-sheet secondary structure and interaction with thioflavine S. In contrast, binding of zinc ions resulting in the same resistance to proteolysis does not provoke transformation of alpha-helical monomeric structure of both PrP polymorphic variants. Cleavage of PrP N-terminus destabilises soluble form of such aggregates, and N-truncated PrPrec complexed with metal cations precipitate. N-truncated PrPrec complexed with Zn precipitated much faster than N-truncated PrPrec complexed with Cu. According to the hypothesis about the key role of small PrP oligomers in PrP(C)-PrP(Sc) transformation, formation of soluble oligomers of PrP complexed with Cu can constitute an additional element in TSE propagation. Identical metal-chelating behaviour of two studied polymorphic PrPrec variants conferring different susceptibilities of sheep to scrapie could indicate their different capabilities to form fibrils. This could imply also that other factors than physico-chemical differences between PrP-VRQ and PrP-ARR and the differences in PrP transformation are responsible for the onset of TSE.  相似文献   

12.
Conversion of the normal protease-sensitive prion protein (PrP) to its abnormal protease-resistant isoform (PrP-res) is a major feature of the pathogenesis associated with transmissible spongiform encephalopathy (TSE) diseases. In previous experiments, PrP conversion was inhibited by a peptide composed of hamster PrP residues 109 to 141, suggesting that this region of the PrP molecule plays a crucial role in the conversion process. In this study, we used PrP-res derived from animals infected with two different mouse scrapie strains and one hamster scrapie strain to investigate the species specificity of these conversion reactions. Conversion of PrP was found to be completely species specific; however, despite having three amino acid differences, peptides corresponding to the hamster and mouse PrP sequences from residues 109 to 141 inhibited both the mouse and hamster PrP conversion systems equally. Furthermore, a peptide corresponding to hamster PrP residues 119 to 136, which was identical in both mouse and hamster PrP, was able to inhibit PrP-res formation in both the mouse and hamster cell-free systems as well as in scrapie-infected mouse neuroblastoma cell cultures. Because the PrP region from 119 to 136 is very conserved in most species, this peptide may have inhibitory effects on PrP conversion in a wide variety of TSE diseases.  相似文献   

13.
Prion protein (PrP) misfolding is one of the pivotal issues in understanding the rudiments of neurodegenerative disorders. The conformational change of mammalian cellular PrP to scrapie PrP is caused by an unknown agent, but there is reasonable evidence supporting the key role of copper ions in this process. The structure of the avian PrP was found to be very similar to the mammalian protein, although there is only 30% homology in the secondary structure. This work shows that copper ions are very effectively bound by hexarepeat fragments of chicken prion protein, although not as effectively as it was found in the case of mammalian protein. By means of potentiometric and spectroscopic techniques (nuclear magnetic resonance, circular dichroism, UV-vis, and electronic paramagnetic resonance), it was shown that Cu(II) ions coordinate to the chicken PrP hexapeptide domain in physiological pH via imidazole nitrogen donors of His residue(s). The binding pattern changes the structure of peptide involved, indicating a possible impact of Cu(II) ions in the biology and pathology of nonmammalian PrP, which could be similar to that found for mammalian PrP. The present study shows that, similar to the human prion octapeptide repeats, chicken prion hexapeptide repeats might bind copper ions in two different ways, depending on the number of repeats and metal/ligand molar ratio: (i) an intra-repeat coordination mode in which copper ion is chelated by His imidazole and deprotonated amide nitrogen in monomeric peptide and (ii) an inter-repeat coordination mode in which a polymeric peptide ligand (dimer and trimer) forms polyimidazole complexes that are very stable at physiological pH. Two proline residues inserted into the hexapeptide unit have a critical impact on the metal-binding ability.  相似文献   

14.
Cu(II) binding to the alpha prion protein (alphaPrP) can be both intramolecular and intermolecular. X-ray absorption spectroscopy at the copper K-edge has been used to explore the site geometry under each binding mode using both insoluble polymeric Cu(II).alphaBoPrP-(24-242) (bovine PrP) complexes and soluble Cu(II) complexes of peptides containing one, two, and four copies of the octarepeat. Analysis of the extended region of the spectra using a multiple scattering approach revealed two types of sites differing in the number of His residues in the first coordination shell of Cu(II). Peptides containing one and two-octarepeat copies in sub-stoichiometric Cu(II) complexes showed the direct binding of a single His in accord with crystallographic intra-repeat geometry. Alternatively, the polymeric Cu(II).alphaBoPrP-(24-242) complex and Cu(II) in its soluble complex with a four-octarepeat peptide at half-site-occupancy showed Cu(II) directly bound to two His residues, consistent with an inter-repeat binding mode. Increasing the Cu(II) site occupancy from 0.5 to 0.75 in the peptide containing four octarepeats resulted in spectral features that are intermediate to those of the inter- and intra-repeat modes. The transition from His-Cu-His (inter-repeat) to Cu-His (intra-repeat) on increasing Cu(II) saturation offers a structural basis for the positive cooperativity of the cation binding process and explains the capacity of alphaPrP to participate in Cu(II)-mediated intermolecular interactions.  相似文献   

15.
The prion protein (PrP) is a Cu2+-binding cell-surface glycoprotein. Using various PrP fragments and spectroscopic techniques, we show that two Cu2+ ions bind to a region between residues 90 and 126. This region incorporates the neurotoxic portion of PrP, vital for prion propagation in transmissible spongiform encephalopathies. Pentapeptides PrP-(92-96) and PrP-(107-111) represent the minimum motif for Cu2+ binding to the PrP-(90-126) fragment. Consequently, we were surprised that the appearance of the visible CD spectra for two fragments of PrP, residues 90-126 and 91-115, are very different. We have shown that these differences do not arise from a change in the co-ordination geometry within the two fragments; rather, there is a change in the relative preference for the two binding sites centred at His111 and His96. These preferences are metal-, pH- and chain-length dependent. CD indicates that Cu2+ initially fills the site at His111 within the PrP-(90-126) fragment. The pH-dependence of the Cu2+ co-ordination is studied using EPR, visible CD and absorption spectroscopy. We present evidence that, at low pH (5.5) and sub-stoichiometric amounts of Cu2+, a multiple histidine complex forms, but, at neutral pH, Cu2+ binds to individual histidine residues. We have shown that changes in pH and levels of extracellular Cu2+ will affect the co-ordination mode, which has implications for the affinity, folding and redox properties of Cu-PrP.  相似文献   

16.
Although Cu(II) ions bind to the prion protein (PrP), there have been conflicting findings concerning the number and location of binding sites. We have combined diethyl pyrocarbonate (DEPC)-mediated carbethoxylation, protease digestion, and mass spectrometric analysis of apo-PrP and copper-coordinated mouse PrP23-231 to "footprint" histidine-dependent Cu(II) coordination sites within this molecule. At pH 7.4 Cu(II) protected five histidine residues from DEPC modification. No protection was afforded by Ca(II), Mn(II), or Mg(II) ions, and only one or two residues were protected by Zn(II) or Ni(II) ions. Post-source decay mapping of DEPC-modified histidines pinpointed residues 60, 68, 76, and 84 within the four PHGGG/SWGQ octarepeat units and residue 95 within the related sequence GGGTHNQ. Besides defining a copper site within the protease-resistant core of PrP, our findings suggest application of DEPC footprinting methodologies to probe copper occupancy and pathogenesis-associated conformational changes in PrP purified from tissue samples.  相似文献   

17.
The infectious agent of transmissible spongiform encephalopathies (TSE) has been considered to be PrP(SC), a structural isoform of cellular prion protein PrP(C). PrP(SC) can exist as oligomers and/or as amyloid polymers. Nucleic acids induce structural conversion of recombinant prion protein PrP and PrP(C) to PrP(SC) form in solution and in vitro. Here, we report that nucleic acids, by interacting with PrP in solution, produce amyloid fibril and fibres of different morphologies, similar to those identified in the diseased brains. In addition, the same interaction produces polymer lattices and spherical amyloids of different dimensions (15-150 nm in diameters). The polymer lattices show apparent morphological similarity to the two-dimensional amyloid crystals obtained from linear amyloids isolated in vivo. The spherical amyloids structurally resemble "spherical particles" observed in natural spongiform encephalopathy (SE) and in scrapie-infected brains (TSE). We suggest that spherical amyloids, PrP(SC)-amylospheroids, are probable constituents of the coat of the spherical particles found in vivo and the latter can act as protective coats of the SE and TSE agents in vivo.  相似文献   

18.
Diagnosis of transmissible spongiform encephalopathy (TSE) disease in humans and ruminants relies on the detection in post-mortem brain tissue of the protease-resistant form of the host glycoprotein PrP. The presence of this abnormal isoform (PrP(Sc)) in tissues is taken as indicative of the presence of TSE infectivity. Here we demonstrate conclusively that high titers of TSE infectivity can be present in brain tissue of animals that show clinical and vacuolar signs of TSE disease but contain low or undetectable levels of PrP(Sc). This work questions the correlation between PrP(Sc) level and the titer of infectivity and shows that tissues containing little or no proteinase K-resistant PrP can be infectious and harbor high titers of TSE infectivity. Reliance on protease-resistant PrP(Sc) as a sole measure of infectivity may therefore in some instances significantly underestimate biological properties of diagnostic samples, thereby undermining efforts to contain and eradicate TSEs.  相似文献   

19.
Transmissible spongiform encephalopathies in mammals are believed to be caused by scrapie form of prion protein (PrP(Sc)), an abnormal, oligomeric isoform of the monomeric cellular prion protein (PrP(C)). One of the proposed functions of PrP(C) in vivo is a Cu(II) binding activity. Previous studies revealed that Cu(2+) binds to the unstructured N-terminal PrP(C) segment (residues 23-120) through conserved histidine residues. Here we analyzed the Cu(II) binding properties of full-length murine PrP(C) (mPrP), of its isolated C-terminal domain mPrP(121-231) and of the N-terminal fragment mPrP(58-91) in the range of pH 3-8 with electron paramagnetic resonance spectroscopy. We find that the C-terminal domain, both in its isolated form and in the context of the full-length protein, is capable of interacting with Cu(2+). Three Cu(II) coordination types are observed for the C-terminal domain. The N-terminal segment mPrP(58-91) binds Cu(2+) only at pH values above 5.0, whereas both mPrP(121-231) and mPrP(23-231) already show identical Cu(II) coordination in the pH range 3-5. As the Cu(2+)-binding N-terminal segment 58-91 is not required for prion propagation, our results open the possibility that Cu(2+) ions bound to the C-terminal domain are involved in the replication of prions, and provide the basis for further analytical studies on the specificity of Cu(II) binding by PrP.  相似文献   

20.
Miura T  Sasaki S  Toyama A  Takeuchi H 《Biochemistry》2005,44(24):8712-8720
The physiological function of the prion protein (PrP) remains enigmatic despite its established involvement in the pathogenesis of spongiform encephalopathies. PrP is a glycolipid-anchored membrane protein, which constitutively recycles between the cell surface and an endosomal compartment. The N-terminal region of PrP contains a four tandem repeat (OP4) of the octapeptide PHGGGWGQ (OP) that binds and reduces Cu(II) ions. We have examined the kinetic properties of the OP4-mediated Cu(II) reduction and found that OP4 exhibits the highest reduction activity around pH 6.5, close to the pH in early endosomes. All four OP units and at least one tryptophan side chain are essential for Cu(II) reduction. The reaction is described by an uncompetitive substrate inhibition mechanism involving a 1:1 Cu(II)-OP4 active intermediate. Structural analysis by Raman spectroscopy has revealed that the Cu(II) ion is coordinated by four histidine Ntau atoms in the active intermediate and the feasibility of formation of this intermediate correlates with the Cu(II) reduction over a pH range from 5.0 to 8.2. Molecular mechanics calculations suggest that two tryptophan residues of OP4 are located near the Cu(II) site, being consistent with the importance of redox-active tryptophan in the Cu(II) reduction. PrP has been proposed to capture Cu(II) ions in the extracellular space and release them in the endosome. The results of this study strongly suggest that PrP also plays a role in the reduction of captured Cu(II) ions prior to their transfer to Cu(I)-specific intracellular copper trafficking proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号