首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 65-kDa protein (p65) was previously identified as a phosphorylated protein in activated macrophages, and has turned out to be a member of a plastin protein family characterized by a series of Ca2+-, calmodulin-, and β-actin-binding domains. In mice, two isoforms, p65/L-plastin and T-plastin, have so far been identified; p65/L-plastin is expressed in hemopoietic cells and cancer cells, and T-plastin in solid tissue cells. We generated monoclonal antibodies to p65/L-plastin, examined the isoform-specificity by using recombinant (r) T-plastin, and found that the antibodies were specific for rp65/L-plastin, whereas immune sera to rp65/L-plastin showed cross-reactions to rT-plastin. One of the antibodies, p65-7B5, was demonstrated to react to native p65/L-plastin by Western blot, flow cytometric, and immunohistochemical analysis. Furthermore, p65-7B5 has made it possible to detect p65/L-plastin-expressing cells in tissues where T-plastin is abundantly expressed. These reagents and procedures should provide specific tools to investigate the role of p65/L-plastin in leukocytes.  相似文献   

2.
The 65-kDa protein (p65) was previously identified as a phosphorylated protein in activated macrophages, and has turned out to be a member of a plastin protein family characterized by a series of Ca(2+)-, calmodulin-, and beta-actin-binding domains. In mice, two isoforms, p65/L-plastin and T-plastin, have so far been identified; p65/L-plastin is expressed in hemopoietic cells and cancer cells, and T-plastin in solid tissue cells. We generated monoclonal antibodies to p65/L-plastin, examined the isoform-specificity by using recombinant (r) T-plastin, and found that the antibodies were specific for rp65/L-plastin, whereas immune sera to rp65/L-plastin showed cross-reactions to rT-plastin. One of the antibodies, p65-7B5, was demonstrated to react to native p65/L-plastin by Western blot, flow cytometric, and immunohistochemical analysis. Furthermore, p65-7B5 has made it possible to detect p65/L-plastin-expressing cells in tissues where T-plastin is abundantly expressed. These reagents and procedures should provide specific tools to investigate the role of p65/L-plastin in leukocytes.  相似文献   

3.
The transduction of auditory signals by cochlear hair cells depends upon the integrity of hair cell stereociliary bundles. Stereocilia contain a central core of actin filaments, cross-linked by actin bundling proteins. In the cochlea, the two proteins described to date as responsible for the spatial arrangement of actin filaments in sterocilia are fimbrin and the recently discovered espin. Fimbrin (the chick homolog of human I-plastin) belongs to the plastins/fimbrin family that includes two additional isoforms of plastins, T- and L-plastin. In the present study, we used isoform specific antibodies to investigate the presence of the T- and L-isoforms of plastin/fimbrin in the adult and developing rat cochlea. We found that T-plastin, but not L-plastin, is expressed in the rat cochlea. During postnatal development of the rat organ of Corti, T-plastin can be detected in the core of stereocilia from early stages of hair cell differentiation, and its expression gradually increases in stereocilia as hair cells mature. However, as opposed to other actin-binding proteins expressed in stereocilia, T-plastin is absent from the stereocilia of mature hair cells. Such temporally restricted expression strengthens the idea of functional differences between plastins isoforms, and suggests that T-plastin could have a specific role in stereocilia formation.  相似文献   

4.
Functional differences between L- and T-plastin isoforms   总被引:10,自引:2,他引:8       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1995-2008
Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin, C.-S., R. H. Aebersold, and J. Leavitt. 1990. Mol. Cell. Biol. 10: 1818-1821). To learn more about the biological significance of their tissue specificity, we have overproduced the T- and L-plastin isoforms in a fibroblast-like cell line, CV-1, and in a polarized epithelial cell line, LLC-PK1. In CV-1 cells, overproduction of T- and L-plastins induces cell rounding and a concomitant reorganization of actin stress fibers into geodesic structures. L- plastin remains associated with microfilaments while T-plastin is almost completely extracted after treatment of the cells with non-ionic detergent. In LLC-PK1 cells, T-plastin induces shape changes in microvilli and remains associated with microvillar actin filaments after detergent extraction while L-plastin has no effect on these structures and is completely extracted. The effect of T-plastin on the organization of microvilli differs from that of villin, another actin- bundling protein. Our experiments indicate that these two isoforms play differing roles in actin filament organization, and do so in a cell type-specific fashion. Thus it is likely that these plastin isoforms play fundamentally different roles in cell function.  相似文献   

5.
Rab5 is a GTP-binding protein that is crucial for endocytic machinery functions. We previously identified L-plastin as a binding protein for Rab5, using an affinity column with constitutively active Rab5. L- and T-plastin are isoforms of a plastin protein family belonging to actin-bundling proteins that are implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. However, the physiological relevance of Rab5 binding to plastin has remained unclear. Here, we show that L- and T-plastin interacted only with activated Rab5 and that they co-localized with Rab5 on the plasma membrane and endosome. Rab5 activity was also higher in both L- and T-plastin over-expressing Cos-1 cells. Furthermore, expression of L- and T-plastin increased the rate of fluid-phase endocytosis. These findings imply that the Rab5 is either activated or the activity is sustained by interaction with plastin, and that this interaction influences endocytic activity.  相似文献   

6.
Actin interaction with L-plastin, a plastin/fimbrins isoform of the alpha-actinin family of molecules, is poorly characterized, from the biochemical point of view. Besides, molecular modeling of the T-isoform has recently provided a complete model of interaction with filamentous actin [Volkmann, N., DeRosier, D., Matsudaira, P., and Hanein, D. (2001) J. Cell Biol. 153, 947-956]. In this study, we report that recombinant L-plastin binds actin in a manner that strongly resembles that of the alpha-actinin-actin interface. The similitudes concern the absence of specificity toward the actin isoform and the inhibition of the binding by phosphoinositides. Furthermore, the participation of actin peptides 112-125 and 360-372 in the interface together with an inhibition of the rate of pyrenyl F-actin depolymerization is in favor of a lateral binding of the plastin isoform along the filament axis and strenghtens the similitudes in the way L-plastin and alpha-actinin bind to actin. We have also investigated the functional aspect and the putative equivalence of the two actin-binding domains of L-plastin toward actin binding. We demonstrate for the first time that the two recombinant fragments, expressed as single domains, have different affinities for actin. We further analyzed the difference using chemical cross-linking and F-actin depolymerization experiments assayed by fluorescence and high-speed centrifugation. The results clearly demonstrate that the two actin-binding domains of plastin display different modes of interaction with the actin filament. We discuss these results in light of the model of actin interaction proposed for T-plastin.  相似文献   

7.
The phosphoprotein plastin was originally identified as an abundant transformation-induced polypeptide of chemically transformed neoplastic human fibroblasts. This abundant protein is normally expressed only in leukocytes, suggesting that it may play a role in hemopoietic cell differentiation. Protein microsequencing of plastin purified from leukemic T lymphocytes by high-resolution two-dimensional gel electrophoresis produced eight internal oligopeptide sequences. An oligodeoxynucleotide probe corresponding to one of the oligopeptides was used to clone cDNAs from transformed human fibroblasts that encoded the seven other oligopeptides predicted for human plastin. Sequencing and characterization of two cloned cDNAs revealed the existence of two distinct, but closely related, isoforms of plastin--l-plastin, which is expressed in leukocytes and transformed fibroblasts, and t-plastin, which is expressed in normal cells of solid tissues and transformed fibroblasts. The leukocyte isoform l-plastin is expressed in a diverse variety of human tumor cell lines, suggesting that it may be involved in the neoplastic process of some solid human tumors.  相似文献   

8.
Fimbrin is an actin-bundling protein found in intestinal microvilli, hair cell stereocilia, and fibroblast filopodia. The complete protein sequence (630 residues) of chicken intestine fimbrin has been determined from two full-length cDNA clones. The sequence encodes a small amino-terminal domain (115 residues) that is homologous with two calcium-binding sites of calmodulin and a large carboxy-terminal domain (500 residues) consisting of a fourfold-repeated 125-residue sequence. This repeat is homologous with the actin-binding domain of alpha-actinin and the amino-terminal domains of dystrophin, actin-gelation protein, and beta-spectrin. The presence of this duplicated domain in fimbrin links actin bundling proteins and gelation proteins into a common family of actin cross-linking proteins. Fimbrin is also homologous in sequence with human L-plastin and T-plastin. L-plastin is found in only normal or transformed leukocytes where it becomes phosphorylated in response to IL 1 or phorbol myristate acetate. T-plastin is found in cells of solid tissues where it does not become phosphorylated. Neoplastic cells derived from solid tissues express both isoforms. The differences in expression, sequence, and phosphorylation suggest possible functional differences between fimbrin isoforms.  相似文献   

9.
We have cloned and characterized an intronic fragment of zebrafish lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) that drives expression to the zebrafish enveloping layer (EVL). L-plastin is a calcium-dependent actin-bundling protein belonging to the plastin/fimbrin family of proteins, and is necessary for the proper migration and attachment of several adult cell types, including leukocytes and osteoclasts. However, in zebrafish lcp1 is abundantly expressed much earlier, during differentiation of the EVL. The cells of this epithelial layer migrate collectively, spreading vegetally over the yolk. L-plastin expression persists into the larval periderm, a transient epithelial tissue that forms the first larval skin. This finding establishes that L-plastin is activated in two different embryonic waves, with a distinct regulatory switch between the early EVL and the later leukocyte. To better study L-plastin expressing cells we attempted CRISPR/Cas9 homology-driven recombination (HDR) to insert a self-cleaving peptide (Cre-P2A-EGFP-CAAX) downstream of the native lcp1 promoter. This produced a stable zebrafish line expressing Cre recombinase in EVL nuclei and green fluorescence in EVL cell membranes. In vivo tracking of these labeled cells provided enhanced views of EVL migration behavior, membrane extensions, and mitotic events. Finally, we experimentally dissected key elements of the targeted lcp1 locus, discovering a ∼300 bp intronic sequence sufficient to drive EVL expression. The lcp1: Cre-P2A-EGFP-CAAX zebrafish should be useful for studying enveloping layer specification, gastrulation movements and periderm development in this widely used vertebrate model. In addition, the conserved regulatory sequences we have isolated predict that L-plastin orthologs may have a similar early expression pattern in other vertebrate embryos.  相似文献   

10.
T- and L-plastin are highly similar actin-bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T-plastin localizes predominantly to the cytoplasm, whereas L-plastin distributes between nucleus and cytoplasm in HeLa or Cos cells. T-plastin shows nuclear accumulation upon incubation of cells with the CRM1 antagonist leptomycin B (LMB). We identified a Rev-like nuclear export sequence (NES) in T-plastin that is able to export an otherwise nuclear protein in an LMB-dependent manner. Deletion of the NES promotes nuclear accumulation of T-plastin. Mutation of residues L17, F21 or L26 in the T-plastin NES inhibits nuclear efflux. L-plastin harbors a less conserved NES and lacks the F21 T-plastin residue. Insertion of a Phe residue in the L-plastin NES specifically enhances its export activity. These findings explain why both isoforms exhibit specific distribution patterns in eukaryotic cells.  相似文献   

11.

Background

Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion.

Methodology/Principal Findings

To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-δ isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process.

Conclusions/Significance

Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity binding to the cytoskeleton. In carcinoma cells, PKC-δ signaling pathways appear to link L-plastin phosphorylation to actin polymerization and invasion.  相似文献   

12.
The complete cDNA sequence of human intestine-specific plastin (I-plastin) was determined from a clone derived by PCR. It consists of a 97-bp 5' untranslated region, a 1,887-bp coding region, and a 1,655-bp 3' untranslated region. The coding region predicts a 629-residue polypeptide whose sequence displays 86, 75, and 73% identities with chicken intestine fimbrin, human T-plastin, and human L-plastin, respectively. Recombinant I-plastin cross-linked actin filaments into bundles in the absence but not in the presence of calcium. The I-plastin gene was mapped by PCR to human chromosome 3; the L- and T-plastin genes were previously mapped to chromosomes 13 and X, respectively. I-plastin mRNA was detected in the small intestine, colon, and kidneys; relatively lower levels of expression were detected in the lungs and stomach. In contrast, L-plastin expression was restricted to the spleen and other lymph node-containing organs, while T-plastin was expressed in a variety of organs, including muscle, brain, uterus, and esophagus. In contrast to the situation for the intestine, high levels of L- and T-plastin mRNAs were detected in Caco-2, a human colon-derived cell line. Immunofluorescence microscopy detected I-plastin in the brush border of the small intestine and colon. These results identify I-plastin as the human homolog of chicken intestine fimbrin and as a third plastin isoform in humans.  相似文献   

13.
A protein purified from cytoskeletal fractions of Dictyostelium discoideum proved to be a member of the fimbrin/plastin family of actin-bundling proteins. Like other family members, this Ca(2+)-inhibited 67-kDa protein contains two EF hands followed by two actin-binding sites of the alpha-actinin/beta-spectrin type. Dd plastin interacted selectively with actin isoforms: it bound to D. discoideum actin and to beta/gamma-actin from bovine spleen but not to alpha-actin from rabbit skeletal muscle. Immunofluorescence labeling of growth phase cells showed accumulation of Dd plastin in cortical structures associated with cell surface extensions. In the elongated, streaming cells of the early aggregation stage, Dd plastin was enriched in the front regions. To examine how the bundled actin filaments behave in myosin II-driven motility, complexes of F-actin and Dd plastin were bound to immobilized heavy meromyosin, and motility was started by photoactivating caged ATP. Actin filaments were immediately propelled out of bundles or even larger aggregates and moved on the myosin as separate filaments. This result shows that myosin can disperse an actin network when it acts as a motor and sheds light on the dynamics of protein-protein interactions in the cortex of a motile cell where myosin II and Dd plastin are simultaneously present.  相似文献   

14.
Modulation of the actin cytoskeleton is critical for tumor cell migration and invasion. Therefore, actin-binding proteins which regulate this modulation may be valuable targets to inhibit the metastatic properties of tumor cells. Changes in the actin cytoskeleton are accomplished by a variety of actin-binding proteins such as cofilin, α-actinin, filamin, fascin and the plastins. Interestingly, the hematopoetic isoform of the plastins, L-plastin, is not only expressed by hematopoetic cells, but also by most human cancer cell lines. Yet, data regarding the functional importance of L-plastin expression in tumor tissues are controversial: in colon carcinomas, the expression level of L-plastin correlated with tumor progression, whereas no such correlation could be seen in breast carcinomas. We therefore systematically investigated whether expression of L-plastin influences the adhesiveness, the motility and invasiveness of human tumor cells. An siRNA mediated knock-down of L-plastin in an L-plastin positive melanoma cell line inhibited migration of these cells. Accordingly, expression of L-plastin in L-plastin negative melanoma cells led to enhanced cell migration towards extracellular matrix components. However, mere expression of L-plastin did not promote tumor cell invasion into basement membranes. Only, if L-plastin was phosphorylated, tumor cell invasion was promoted. Therefore, in clinical studies, not only the expression of L-plastin but also the phosphorylation status of L-plastin should be compared with regard to tumor progression.Besides the potential prognostic relevance of L-plastin expression and phosphorylation in human cancer cells, L-plastin may represent a novel target for cancer therapy. Moreover, the constitutive activity of the L-plastin promotor in non-hematopoetic tumors opens up novel perspectives for gene therapy of cancer using L-plastin-promotor driven viral vectors.  相似文献   

15.
Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.  相似文献   

16.
17.
Shigella flexneri is an enteroinvasive bacterium which causes bacillary dysentery in humans. A major feature of its pathogenic potential is the capacity to invade epithelial cells. Shigella entry into epithelial cells is considered a parasite-induced internalization process requiring polymerization of actin. Here we describe the cytoskeletal rearrangements during S. flexneri invasion of HeLa cells. After an initial contact of the bacterium with the cell surface, distinct nucleation zones of heavy chain actin polymerization appear in close proximity to the contact site underneath the parasite with long filaments being polymerized. These structures then push cellular protrusions that rise beside the entering bacterium, being sustained by tightly bundled long actin filaments organized in parallel orientation with their positive ends pointing to the cytoplasmic membrane. Finally, the cellular projections coalesce above the bacterial body, leading to its internalization. In addition, we found the actin-bundling protein plastin to be concentrated in these protrusions. Since plastin is known to bundle actin filaments in parallel orientation, colocalization of parallel actin filaments and plastin in the cellular protrusions strongly suggested a functional role of this protein in the architecture of parasite-induced cellular projections. Using transfection experiments, we show the differential recruitment of the two plastin isoforms (T- and L-) into Shigella entry zones. By transient expression of a truncated T-plastin which is deprived of one of its actin-binding sites, we also demonstrate the functional role of T-plastin in Shigella entry into HeLa cells.  相似文献   

18.
We previously identified a 65-kDa protein (p65) that was phosphorylated in activated macrophages. It has turned out to be a murine homologue of human L-plastin, which was identified as a novel protein in human cancer cells. p65/L-plastin is characterized by a series of Ca2+-, calmodulin-, and actin-binding domains, and is thought to play a crucial role in leukocytes and cancer cells. We have expressed a recombinant (r) p65/L-plastin in Escherichia coli that binds to β-actin and prepared high-titer antibodies using large amounts of the protein as immunogen. Anti-rp65/L-plastin antibodies recognize native p65/L-plastin as well as rp65/L-plastin and have enabled us to detect the fine structures of intracellular p65/L-plastin, and it was found that its localization was extensively changed by stimulation with bacterial components. We further developed an enzyme-linked immunosorbent assay system and a flow cytometry method using these reagents, which made it possible to measure antibodies, including autoantibodies, against p65/L-plastin and to evaluate the maturation-dependent expression of the protein in leukocytes.  相似文献   

19.
We previously identified a 65-kDa protein (p65) that was phosphorylated in activated macrophages. It has turned out to be a murine homologue of human L-plastin, which was identified as a novel protein in human cancer cells. p65/L-plastin is characterized by a series of Ca(2+)-, calmodulin-, and actin-binding domains, and is thought to play a crucial role in leukocytes and cancer cells. We have expressed a recombinant (r) p65/L-plastin in Escherichia coli that binds to beta-actin and prepared high-titer antibodies using large amounts of the protein as immunogen. Anti-rp65/L-plastin antibodies recognize native p65/L-plastin as well as rp65/L-plastin and have enabled us to detect the fine structures of intracellular p65/L-plastin, and it was found that its localization was extensively changed by stimulation with bacterial components. We further developed an enzyme-linked immunosorbent assay system and a flow cytometry method using these reagents, which made it possible to measure antibodies, including autoantibodies, against p65/L-plastin and to evaluate the maturation-dependent expression of the protein in leukocytes.  相似文献   

20.
Such phagocytic leukocytes as macrophages and neutrophils are the key cellular components of innate immunity. The actin cytoskeleton is essential for their recruitment and activation in infected tissues. We have previously identified p65/L-plastin with Ca(2+)-, calmodulin-, and beta-actin-binding domains in macrophages. In order to further investigate the p65/L-plastin-involved cellular functions, we cloned the cDNA for murine grancalcin, a possible binding partner of p65/L-plastin. According to the sequence, grancalcin is a member of the penta-EF-hand protein family. We prepared recombinant (r) grancalcin for functional studies and found that it exhibited Ca(2+)-dependent precipitation. High-titer antibodies against the protein enabled us to detect intracellular grancalcin. A flow cytometric analysis revealed grancalcin to be highly expressed in macrophages and neutrophils. The protein was particularly abundant in those cells recovered from bacteria-infected sites. Immunohistochemical studies clarified that grancalcin was translocated to the actin cytoskeleton in macrophages upon exposure to bacterial lipopolysaccharide. These findings suggest that grancalcin plays a key role in leukocyte-specific functions that are responsible for host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号