首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Topography of lactose permease from Escherichia coli   总被引:16,自引:0,他引:16  
The topography of lactose permease, in native membrane vesicles and after reconstitution of the purified protein into proteoliposomes, has been investigated by labeling the membrane-embedded portions of the protein using photoactivatable, hydrophobic reagents and by labeling the exposed portions of the protein with water-soluble, electrophilic reagents. Some sites of modification have been localized in fragments of the protein produced by chemical and enzymatic cleavage. These define a number of hydrophilic loops and membrane-spanning regions and give some substance to topographic models of the permease. The N-terminal third of the molecule was labeled by three photoactivatable reagents (3-(trifluoromethyl)-3-m-iodophenyldiazirine and the phospholipid analogues 2-(aceto-(4-benzoylphenylether]-1-palmitoylphosphatidylcholine) and 2-(4-azido-2-nitrophenylaminoacetyl)-1-palmitoylphosphatidylcholin e) as well as the water soluble, electrophilic reagents. The C-terminal part of the molecule is labeled by the diazirine and, to a lesser extent, by the phospholipid analogues. It apparently has more nucleophilic groups accessible to water-soluble reagents than the N-terminal domain, in which the density of apparently unreactive ionizable residues proved to be unexpectedly high. The apparent lack of reactivity of some of these residues may be explained either by their being buried in the protein moiety within the membrane domain, or by their close association with other ionizable residues on the surface of the protein.  相似文献   

2.
Sobczak I  Lolkema JS 《Biochemistry》2003,42(32):9789-9796
The citrate transporter CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with two sodium ions and one proton. Treatment of CitS with the alkylating agent N-ethylmaleimide resulted in a complete loss of transport activity. Treatment of mutant proteins in which the five endogenous cysteine residues were mutated into serines in different combinations revealed that two cysteine residues located in the C-terminal cytoplasmic loop, Cys-398 and Cys-414, were responsible for the inactivation. Labeling with the membrane impermeable methanethiosulfonate derivatives MTSET and MTSES in right-side-out membrane vesicles showed that the cytoplasmic loop was accessible from the periplasmic side of the membrane. The membrane impermeable but more bulky maleimide AmdiS did not inactivate the transporter in right-side-out membrane vesicles. Inactivation by N-ethylmaleimide, MTSES, and MTSET was prevented by the presence of the co-ion Na(+). Protection was obtained upon binding 2 Na(+), which equals the transport stoichiometry. In the absence of Na(+), the substrate citrate had no effect on the inactivation by permeable or impermeable thiol reagents. In contrast, when subsaturating concentrations of Na(+) were present, citrate significantly reduced inactivation suggesting ordered binding of the substrate and co-ion; citrate is bound after Na(+). In the presence of the proton motive force, the reactivity of the Cys residues was increased significantly for the membrane permeable N-ethylmaleimide, while no difference was observed for the membrane impermeable thiol reagents. The results are discussed in the context of a model for the opening and closing of the translocation pore during turnover of the transporter.  相似文献   

3.
The (Na+ + K+)-ATPase enzyme of rat brain microsomes can be reversibly inhibited by a new fluorescent sulfhydryl (SH) probe, dimethylaminoaphthalenecysteine-Hg+ (Dn-cys-Hg+). This reagent is more reactive than N-ethylamaleimide (MalNEt) toward membrane sulfhydryl groups. A procedure using the two SH reagents sequentially seems to permit a more selective labelling of the SH groups involved in the (Na+ + K+)-ATPase than is possible by using MalNEt alone. Brain microsomes treated by this method incorporate the fluorescent label within or near the active site of the enzyme. When the probe was bound a blue shift of its fluorescence emission maximum (from 540 to 495 nm) and a 20-fold increase in relative fluorescence occurred. This indicates that the Dn moiety is within a very non-polar region of the membrane.  相似文献   

4.
The rate of reaction of - SH groups of the mitochondrial phosphate carrier with 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2) and N-ethylmaleimide (MalNEt) was followed by measuring the inhibition of phosphate transport. The changes in the rate of reaction caused by alterations of the ionic composition of the matrix were compared with changes of the total intramitochondrial phosphate content, the intramitochondrial K+ content and the value of intramitochondrial pH. The ionic composition was manipulated by addition of valinomycin to non-respiring or to respiring mitochondria and by addition of inorganic phosphate to respiring and non-respiring mitochondria. From all these variables it was the changes of the intramitochondrial pH which correlated with the - SH group reactivity. Internal acidification decreased and internal alkalinization increased the rate of reaction of mitochondrial phosphate carrier with both Nbs2 and MalNEt. Nbs2 did not penetrate the inner mitochondrial membrane as assayed by determination of the acid-soluble thiol content of the matrix. From this fact it follows that the Nbs2-reactive SH groups of the carrier were accessible from the outer surface of the inner membrane in our experiments. It is concluded that intramitochondrial pH modifies the reactivity of the externally oriented - SH groups indirectly. A hypothesis is presented according to which protonation and deprotonation of the carrier molecule on the inner side could induce a conformational change of the whole protein altering also the microenvironment of the - SH groups near the opposite surface.  相似文献   

5.
Highly purified adenine nucleotide transporter from bovine heart mitochondria was reconstituted with phospholipids to form vesicles which catalyzed atractyloside-sensitive adenine nucleotide translocation. When internal ATP was exchanged with external ADP, this reaction was enhanced by agents capable of collapsing a membrane potential, but not by inorganic phosphate. When the purified nucleotide transporter was reconstituted together with a second protein fraction, nucleotide transport was stimulated by inorganic phosphate. The stimulated rate was eliminated by mersalyl or other SH reagents. The second protein fraction could be replaced by preparations of purified phosphate transporter.  相似文献   

6.
The effects of tyrosine- and sulfhydryl-specific reagents on the Na+-dependent transport of phosphate in brush border membrane vesicles prepared from rat renal cortex were investigated. This study is the first to show that the tyrosine-specific reagents 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and tetranitromethane inactivate the transporter in a concentration- and time-dependent fashion while the membrane impermeant tyrosine reagent, N-acetylimidazole, has no effect on phosphate uptake. The membrane permeant sulfhydryl reagent N-ethylmaleimide also caused a time- and concentration-dependent inactivation of this transport process but the membrane impermeant reagents 7-chloro-4-sulfobenzo-2-oxa-1,3-diazole and eosin-5-maleimide had little effect on phosphate uptake. The inhibitory effects of both tyrosine- and sulfhydryl-specific reagents were additive, but no protection from inactivation by tyrosine-specific reagents could be achieved by preincubation of the vesicles with the substrates of the transporter or with competitive inhibitors of the transport process. These results suggest that the amino acids modified by these agents are located either within the membrane or on the cytosolic surface of the transporter. These residues may not participate in substrate binding, but may be important for the conformational change of the transporter necessary for the translocation of phosphate across these membranes. This study also shows that Na+-dependent phosphate transport can be inactivated by other reagents which covalently modify histidine, carboxyl, and amino groups on proteins.  相似文献   

7.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

8.
Synaptic membranes from rat spinal cord were solubilized in the presence of 2% sodium cholate, phospholipids and 15% ammonium sulphate. The soluble extract was incorporated into liposomes consisting of asolectin and crude rat brain lipids. Reconstitution of the functional transporter protein was achieved by removal of detergent by gel filtration. Several parameters proved to be important for optimal reconstitution efficiency: (a) the lipid composition of the liposomes, (b) the type of detergent, and (c) the phospholipid/protein and detergent/protein ratio during reconstitution. In the reconstituted system, the transport of glycine showed a specific activity about twice that of native vesicles. The ionic dependence of the transport, the inhibitory effect of nigericin in the presence of external sodium and the stimulatory effect of valinomycin in the presence of internal potassium on glycine transport were preserved and more clearly observed in the reconstituted system. These results indicate that, in this preparation, the glycine transporter protein retains the same features displayed in the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity and inhibitor sensitivity.  相似文献   

9.
Na+ and Cl(-)-coupled glycine transporters control the availability of glycine neurotransmitter in the synaptic cleft of inhibitory glycinergic pathways. In this report, we have investigated the involvement of the second intracellular loop of the neuronal glycine transporter 2 (GLYT2) on the protein conformational equilibrium and the regulation by 4alpha-phorbol 12 myristate 13-acetate (PMA). By substituting several charged (Lys-415, Lys-418, and Lys-422) and polar (Thr-419 and Ser-420) residues for different amino acids and monitoring plasma membrane expression and kinetic behavior, we found that residue Lys-422 is crucial for glycine transport. The introduction of a negative charge in 422, and to a lower extent in neighboring N-terminal residues, dramatically increases transporter voltage dependence as assessed by response to high potassium depolarizing conditions. In addition, [2-(trimethylammonium)ethyl] methanethiosulfonate accessibility revealed a conformational connection between Lys-422 and the glycine binding/permeation site. Finally, we show that the mutation of positions Thr-419, Ser-420, and mainly Lys-422 to acidic residues abolishes the PMA-induced inhibition of transport activity and the plasma membrane transporter internalization. Our results establish a new structural basis for the action of PMA on GLYT2 and suggest a complex nature of the PMA action on this glycine transporter.  相似文献   

10.
Treatment of human placental brush-border membrane vesicles with four tyrosine group-specific reagents, N-acetylimidazole, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), tetranitromethane and p-nitrobenzesulfonyl fluoride, inhibited NaCl gradient-driven taurine uptake in these vesicles without affecting the vesicle integrity. The relative potency of these reagents to inhibit the transporter was in the following order: tetranitromethane greater than NBD-Cl greater than p-nitrobenzenesulfonyl fluoride greater than N-acetylimidazole. The inhibition by N-acetylimidazole was reversible with hydroxylamine and the inhibition by NBD-Cl was reversible with 2-mercaptoethanol. Kinetic analysis of taurine uptake in control and in N-acetylimidazole-treated membrane vesicles revealed that the inhibition was primarily due to a reduction in the maximal velocity. There was no change in the affinity of the transporter for taurine in control and treated vesicles. The transporter could be protected from the N-acetylimidazole-induced inhibition by Na+. The dependence of taurine uptake rate on extravesicular Na+ concentration was sigmoidal and analysis of the data revealed that two Na+ ions were involved per transport of one taurine molecule. It is concluded that tyrosine residues are essential for optimal transport function of the human placental taurine transporter and that these critical tyrosine residues are located at or near the Na+-binding site of the transporter.  相似文献   

11.
The Glut1 glucose transporter has been proposed to form an aqueous sugar translocation pathway through the lipid bilayer via the clustering of several transmembrane helices (Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F. (1985) Science 229, 941-945). The participation of transmembrane helix 10 in the formation of this putative aqueous tunnel was tested using cysteine-scanning mutagenesis in conjunction with the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A series of 21 mutants was created from a fully functional, cysteine-less, parental Glut1 molecule by changing each residue within putative transmembrane segment 10 to cysteine. Each mutant was then expressed in Xenopus oocytes, and its plasma membrane content, 2-deoxyglucose uptake activity, and sensitivity to pCMBS were measured. Helix 10 exhibited a highly distinctive reaction profile to scanning mutagenesis whereby cysteine substitution at residues within the cytoplasmic N-terminal half of the helix tended to increase specific transport activity, whereas substitution at residues within the exoplasmic C-terminal half of the helix tended to decrease specific transport activity. Four residues within helix 10 were clearly accessible to pCMBS as judged by inhibition or stimulation of transport activity. All four of these residues were clustered along one face of a putative alpha-helix. These results combined with previously published data suggest that transmembrane segment 10 of Glut1 forms part of the sugar permeation pathway. Two-dimensional models for the conformation of the 12 transmembrane helices and the exofacial glucose-binding site of Glut1 are proposed that are consistent with existing experimental data.  相似文献   

12.
Kamp D  Sieberg T  Haest CW 《Biochemistry》2001,40(31):9438-9446
An increase of the intracellular Ca(2+) concentration in erythrocytes is known to activate rapid nonspecific bidirectional translocation of membrane-inserted phospholipid probes and to decrease the asymmetric distribution of endogenous membrane phospholipids. These scrambling effects are now shown to be suppressed by pretreatment of cells with the essentially impermeable reagents 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 2,4,6-trinitrobenzenesulfonate. The inhibitory effects are no longer observed during renewed activation of scrambling following a first transient activation by Ca(2+). Assuming the involvement of the human scramblase, this suggests a conformational alteration of this protein during activation by Ca(2+). Marked suppression of scrambling activity is also observed in cells pretreated with the disulfide reducing agent dithioerythritol which can be reverted by the SH oxidizing agent diamide. This indicates the importance of intramolecular and/or intersubunit disulfide bonds for the function of the scramblase. On the other hand, treatment of cells with the SH reagents N-ethylmaleimide and phenylarsine oxide enhances Ca(2+)-activated scrambling and diminution of asymmetry of membrane phospholipids. This suggests an allosteric connection of several protein SH groups to the translocation mechanism. The inhibitors retain their strong suppressive effects. Besides covalent modification, addition of oligomycin highly stimulates and addition of clotrimazole suppresses the Ca(2+)-activated translocation. No evidence for a role of the ATP-binding cassette transporter ABCA1 in the Ca(2+)-activated outward translocation is obtained. Suppression of phospholipid scrambling by dithioerythritol inhibits Ca(2+)-induced spheroechinocytosis and reduces the extent of subsequent microvesiculation. Scrambling of endogenous phospholipids is proposed to induce echinocytosis and to have only a stimulatory effect on microvesiculation.  相似文献   

13.
Glycine is a critical factor in ischemia as reduced astrocytic and increased extracellular glycine levels aggravate the neurotoxic effect of glutamate and consequently, increase the extent of brain damage. Extracellular levels of glycine are primarily regulated by the plasma membrane glycine transporter 1. In the present study, we examined the effects of transient ischemia (1 h occlusion of the middle cerebral artery; followed by 0 h, 0.5 h, 1 h, 2 h, 4 h, 24 h or 48 h reperfusion) on immunoreactivity and mRNA expression of glycine transporter 1 in the rat forebrain. In control animals, glycine transporter 1-immunoreactivity was strong in diencephalic and certain telencephalic structures, moderate in the globus pallidus, and rather low in the cortex and striatum. In situ hybridization studies revealed a similar distribution pattern of glycine transporter 1 mRNA expression. One hour occlusion of the middle cerebral artery resulted in a significant decrease in ipsilateral glycine transporter 1-immunoreactivity and mRNA expression in a circumscribed region of the preoptic/hypothalamic area; both the immunoreactivity and mRNA exhibited further reductions with increasing reperfusion time. In contrast, the cerebral cortex and the globus pallidus showed an increase of glycine transporter 1-immunoreactivity after 0.5 h reperfusion; the elevation proved to be transient in the somatosensory cortex and remained sustained in the globus pallidus after longer reperfusion times. Western blot analysis of globus pallidus samples from the ipsilateral side confirmed higher glycine transporter 1 protein levels. These results suggest an elevated expression of the transporter protein facilitating the glial uptake of glycine from the extracellular space. However, glycine transporter 1 mRNA expression was not significantly different in the penumbra regions from the corresponding contralateral sites of the injury. Together, these findings indicate that post-translational mechanisms are of primary importance in elevating glycine transporter 1 protein levels following transient ischemia.  相似文献   

14.
Glycine residues may play functional and structural roles in membrane proteins. In this work we studied the role of glycine residues in EmrE, a small multidrug transporter from Escherichia coli. EmrE extrudes various drugs across the plasma membrane in exchange with protons and, as a result, confers resistance against their toxic effects. Each of 12 glycine residues was replaced by site-directed mutagenesis. Four of the 12 glycine residues in EmrE are evolutionary conserved within the small multidrug resistance family of multidrug transporters. Our analysis reveals that only two (Gly-67 and Gly-97) of these four highly conserved residues are essential for transporter activity. Moreover, two glycine positions that are less conserved, Gly-17 and Gly-90, demonstrate also a nil phenotype when substituted. Our present results identifying Gly-17 and Gly-67 as irreplaceable reinforce the importance of previously defined functional clusters. Two essential glycine residues, Gly-90 and Gly-97, form a protein motif in which glycine residues are separated by six other residues (GG7). Upon substitution of glycine in these positions, the protein ability to form dimers is impaired as evaluated by cross-linking and pull-down experiments.  相似文献   

15.
The tricarboxylate transport system located in the inner mitochondrial membrane was studied as an isolated protein reconstituted in proteoliposomes. The effects on the transport of citrate by various reagents, specific for different aminoacid residues, were analyzed. In the group of SH reagents, it was found that N-ethylmaleimide is an irreversible inhibitor of the citrate–citrate exchange, while HgCl2 and the mercurial mersalyl cause a rapid unidirectional efflux of citrate from liposomes. It was demonstrated that NEM and mercurials act on different SH groups. Dithioerythritol is not able to reverse the effect of mersalyl unless another reagent, pyridoxalphosphate, is present. Pyridoxalphosphate itself, a reagent specific for NH2 residues, is an effective inhibitor of citrate exchange transport, as measured in both influx and efflux, but it has no effect on the mercurial-induced efflux. The same behavior was observed with diethylpyrocarbonate, a reagent specific for histidine and tyrosine residues. Interestingly, a slow basic efflux of internal citrate, in the absence of countersubstrate, was observed in proteoliposomes. Because it is inhibited by the same reagents acting on the exchange process, it is deduced that it is catalyzed by the tricarboxylate carrier. The ability of the carrier to perform a uniport of the substrate suggests the presence of a single substrate binding site on the carrier protein. A preliminary kinetic approach indicates that such a transport model is compatible with this theory.  相似文献   

16.
Amino acid residues that participate in antagonist binding to the strychnine-sensitive glycine receptor (GlyR) have been identified by selectively modifying functional groups with chemical reagents. Moreover, a region directly involved with strychnine binding has been localized in the 48-kDa subunit of this receptor by covalent labeling and proteolytic mapping. Modification of tyrosyl or arginyl residues promotes a marked decrease of specific [3H]strychnine binding either to rat spinal cord plasma membranes or to the purified GlyR incorporated into phospholipid vesicles. Occupancy of the receptor by strychnine, but not by glycine, completely protects from the inhibition caused by chemical reagents. Furthermore, these tyrosine- or arginine-specific reagents decrease the number of binding sites (Bmax) for [3H]strychnine binding without affecting the affinity for the ligand (Kd). These observations strongly suggest that such residues are present at, or very close to, the antagonist binding site. In order to localize the strychnine binding domain within the GlyR, purified and reconstituted receptor preparations were photoaffinity labeled with [3H]strychnine. The radiolabeled 48-kDa subunit was then digested with specific chemical proteolytic reagents, and the peptides containing the covalently bound radioligand were identified by fluorography after gel electrophoresis. N-Chlorosuccinimide treatment of [3H]strychnine-labeled 48K polypeptide yielded a single labeled peptide of Mr approximately 7300, and cyanogen bromide gave a labeled peptide of Mr 6200.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A model has been proposed for the exofacial configuration of the Glut1 glucose transporter in which eight transmembrane domains form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 12, predicted to be an outer helix in this hypothetical model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A previously characterized functional cysteine-less Glut1 molecule was used to produce 21 Glut1 point mutants by changing each residue along helix 12 to a cysteine residue. These mutants were then expressed in Xenopus oocytes, and their protein levels, functional activities, and sensitivities to pCMBS were determined. Strikingly, in contrast to all nine other predicted Glut1 transmembrane helices that have been previously examined by this method, none of the 21 helix 12 single-cysteine mutants exhibited significant inhibition of specific transport activity. Also unlike most other Glut1 transmembrane domains in which solvent-accessible residues lie along a single face of the helix, mutations in five consecutive residues predicted to lie close to the exofacial face of the membrane resulted in sensitivity to pCMBS-induced transport inhibition. These results suggest that helix 12 plays a passive stabilizing role in the structure of Glut1 and is not directly involved in the transport mechanism. Additionally, the pCMBS data indicate that the predicted exoplasmic end of helix 12 is completely exposed to the external solvent when the transporter is in its exofacial configuration.  相似文献   

18.
The GLUT1 glucose transporter has been proposed to form an aqueous substrate translocation pathway via the clustering of several amphipathic transmembrane helices (Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F. (1985) Science 229, 941-945). The possible role of transmembrane helix 8 in the formation of this permeation pathway was investigated using cysteine-scanning mutagenesis and the membrane-impermeant sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). Twenty-one GLUT1 mutants were created from a fully functional cysteine-less parental GLUT1 molecule by successively changing each residue along transmembrane segment 8 to a cysteine. The mutant proteins were then expressed in Xenopus oocytes, and their membrane concentrations, 2-deoxyglucose uptake activities, and sensitivities to pCMBS were determined. Four positions within helix 8, alanine 309, threonine 310, serine 313, and glycine 314, were accessible to pCMBS as judged by the inhibition of transport activity. All four of these residues are clustered along one face of a putative alpha-helix. These results suggest that transmembrane segment 8 of GLUT1 forms part of the sugar permeation pathway. Updated two-dimensional models for the orientation of the 12 transmembrane helices and the conformation of the exofacial glucose binding site of GLUT1 are proposed that are consistent with existing experimental data and homology modeling based on the crystal structures of two bacterial membrane transporters.  相似文献   

19.
(1) The properties of the SH groups of the phosphate transport protein of rat heart mitochondria were investigated on the basis of inhibition caused by SH reagents under different conditions. (2) The essential thiol groups are located near the external surface, as they are accessible to impermeable reagents from the external space. (3) The environment of the sulfhydryl groups influences their reactivity, as alteration of the external pH affects adversely their reactions with ionizable and non-ionizable SH reagents. (4) Intramitochondrial pH exerts a transmembrane effect: alkalinization augments and acidification diminishes the reaction rate of the sulfhydryl groups on the opposite surface of the membrane. (5) Changes of the concentration of the transported substrate occurring exclusively in the extramitochondrial space do not influence the reactivity of the essential SH groups. (6) It is concluded that in transport studies the phosphate transport protein of heart and liver mitochondria show basic similarity. It is suggested that the amino-acid sequence around the NEM-reactive cysteine (i.e., Lys-41 - Cys-42 - Arg-43) does not participate in substrate binding.  相似文献   

20.
Is an intact cytoskeleton required for red cell urea and water transport?   总被引:1,自引:0,他引:1  
In order to determine the membrane protein(s) responsible for urea and water transport across the human red cell membrane, we planned to reconstitute purified membrane proteins into phosphatidylcholine vesicles. In preparatory experiments, we reconstituted a mixture of all of the red cell integral membrane proteins into phosphatidylcholine vesicles, but found that p-chloromercuribenzenesulfonate (pCMBS), which normally inhibits osmotic water permeability by approximately 90%, has no effect on this preparation. The preparation was also unable to transport urea at the high rates found in red cells, though glucose transport was normal. White ghosts, washed free of hemoglobin and resealed, also did not preserve normal urea and pCMBS-inhibitable water transport. One-step ghosts, prepared in Hepes buffer in a single-step procedure, without washing, retained normal urea and pCMBS-inhibitable water transport. Perturbations of the cytoskeleton in one-step ghosts, by removal of tropomyosin, or by severing the ankyrin link which binds band 3 to spectrin, caused the loss of urea and pCMBS-inhibitable water transport. These experiments suggest that an unperturbed cytoskeleton may be required for normal urea and pCMBS-inhibitable water transport. They also show that the pCMBS inhibition of water transport is dissociable from the water transport process and suggest a linkage between the pCMBS water transport inhibition site and the urea transport protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号