首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to assess the effect of dietary eicosapentaenoic acid (20:5n-3) on hemocyte parameters such as hemocyte concentration, phagocytosis, and non-stimulated reactive oxygen species (ROS) production in Pacific oysters Crassostrea gigas, as well on proximate biochemical and fatty acid compositions. One-year-old oysters (C. gigas) were fed T-Isochrysis aff. galbana (T-Iso), which is low in 20:5n-3, either alone or with supplements of a lipid emulsion rich in 20:5n-3 at 1%, 10% or 50% (dry weight of the algal ration) for up to 7 weeks. Changes in gill fatty acid composition demonstrated that the lipid emulsion was well ingested by oysters during the dietary conditioning. Biochemical analysis indicated that oysters fed supplements of 50% and, to a lesser extent, 10% lipid emulsions had a higher total lipid content compared with oysters fed other diets, suggesting a more advanced reproductive status for the oysters fed high doses of lipid emulsion. Moreover, some oysters in these two treatment groups spawned during the last three weeks of the seven-week feeding experiment. Lipid supplements had a significant influence on hemocyte concentration, phagocytic index and non-stimulated hemocyte ROS production. After 4 weeks, highest hemocyte concentrations were found in oysters fed on a supplement of 50% lipid emulsion compared with those fed on other diets but the hemocytes derived from these oysters had the lowest short-term phagocytic index. After 7 weeks of dietary conditioning, the ROS production in non-stimulated hemocytes of oysters fed 10% and 50% lipid emulsion declined. These results suggested that 20:5n-3, and perhaps its eicosanoid metabolites, affected oyster hemocyte functions; however, the reproductive status of oysters may also have interfered with the 20:5n-3 dietary effect.  相似文献   

2.
Pacific oysters Crassostrea gigas (Thunberg, 1793) were introduced to the northern Wadden Sea (North Sea, Germany) by aquaculture in 1986 and finally became established. Even though at first recruitment success was rare, three consecutive warm summers led to a massive increase in oyster abundances and to the overgrowth of native mussel beds (Mytilus edulis L.). These mussels constitute biogenic reefs on the sand and mud flats in this area. Survival and growth of the invading C. gigas were investigated and compared with the native mussels in order to predict the further development of the oyster population and the scope for coexistence of both species. Field experiments revealed high survival of juvenile C. gigas (approximately 70%) during the first three months after settlement. Survival during the first winter varied between > 90% during a mild and 25% during a cold winter and was independent of substrate (i.e., mussels or oysters) and tide level. Within their first year C. gigas reached a mean length of 35-53 mm, and within two years they grew to 68-82 mm, which is about twice the size native mussels would attain during that time. Growth of juvenile oysters was not affected by substrate (i.e., sand, mussels, and other oysters), barnacle epibionts and tide level, but was facilitated by fucoid algae. By contrast, growth of juvenile mussels was significantly higher on sand flats than on mussel or oyster beds and higher in the subtidal compared to intertidal locations. Cover with fucoid algae increased mussel growth but decreased their condition expressed as dry flesh weight versus shell weight. High survival and growth rates may compensate for years with low recruitment, and may therefore allow a fast population increase. This may lead to restrictions on habitat use by native mussels in the Wadden Sea.  相似文献   

3.
4.
The oyster ovarian parasite Marteilioides chungmuensis has been reported from Korea and Japan, damaging the oyster industries. Recently, Marteilioides-like organisms have been identified in other commercially important marine bivalves. In this study, we surveyed Marteilioides infection in the Manila clam Ruditapes philippinarum, Suminoe oyster Crassostrea ariakensis, and Pacific oyster Crassostrea gigas, using histology and Marteilioides-specific small subunit (SSU) rDNA PCR. The SSU rDNA sequence of M. chungmuensis (1716 bp) isolated from C. gigas in Tongyoung bay was 99.9% similar to that of M. chungmuensis reported in Japan. Inclusions of multi-nucleated bodies in the oocytes, typical of Marteilioides infection, were identified for the first time in Suminoe oysters. The SSU rDNA sequence of a Marteilioides-like organism isolated from Suminoe oysters was 99.9% similar to that of M. chungmuensis. Marteilioides sp. was also observed from 7 Manila clams of 1840 individuals examined, and the DNA sequences of which were 98.2% similar to the known sequence of M. chungmuensis. Unlike Marteilioides infection of Pacific oysters, no remarkable pathological symptoms, such as large multiple lumps on the mantle, were observed in infected Suminoe oysters or Manila clams. Distribution of the infected Manila clams, Suminoe oysters and Pacific oysters was limited to small bays on the south coast, suggesting that the southern coast is the enzootic area of Marteilioides infection.  相似文献   

5.
Manila clams (Venerupis philippinarum) challenged in laboratory trials via bath exposure proved to be resistant to infections with Mikrocytos mackini (protistan parasite of unknown taxonomic affiliation), while Pacific oysters (Crassostrea gigas) challenged simultaneously using identical conditions developed infections. Although M. mackini was detected by a nucleic acid pathogen specific (PCR) assay in 10-30% of the challenged V. philippinarum that were sampled soon after exposure (0-48 h, n = 40), all of the subsequent V. philippinarum (n = 62) sampled 9-17 weeks post-exposure tested negative for M. mackini by PCR assay. Prevalence of infection for the exposed C. gigas (n = 100) during this same period ranged from 50% to 100% by PCR assay. Infection was confirmed in the oysters (58%, n = 60) by a digoxigenin-labelled DNA probe designed to detect M. mackini by in situ hybridization, but M. mackini was not found in any of the exposed Manila clams (n = 63) using this technique.  相似文献   

6.
In marine bivalves, hemocytes support various physiological functions, including immune defense, nutrient transport, shell repair, and homeostatic maintenance. Although the effects of marine contaminants on the immunological functions of bivalves have been extensively investigated, the impacts of oil spills are not well understood. Therefore, we investigated hemocyte parameters in the Pacific oyster Crassostrea gigas 13 months after the Hebei Spirit oil spill (December 2007) off the west coast of Korea. The parameters studied included hemocyte concentration and mortality, relative proportion of hemocyte populations, and immunological functions such as phagocytosis and oxidative activity using flow cytometry. These immune-related parameters in oysters damaged by the oil spill were also compared to control oysters that were collected from an area unaffected by the spill. The flow cytometry study indicated that granulocyte population, phagocytic capacity, and reactive oxygen species production in oysters exposed to crude oil 13 months prior were depressed compared to the unexposed control oysters. Our data suggest that immunocompetence in oysters affected by the oil spill had not fully recovered 1 year after the accident, although more detailed studies on the physiology and disease resistance should be performed.  相似文献   

7.
QX disease is a fatal disease in Sydney rock oysters caused by the protozoan parasite Marteilia sydneyi. The current study investigates the phagocytosis of M. sydneyi by Sydney rock oyster hemocytes. It also compares the in vitro phagocytic activities of hemocytes from oysters bred for QX disease resistance (QXR) with those of wild-type oysters. After ingestion of M. sydneyi, hemocyte granules fused with phagosome membranes and the pH of phagosomes decreased. Significantly (p = <0.05) more phagosomes in QXR hemocytes showed obvious changes in pH within 40 min of phagocytosis, when compared with wild-type hemocytes. Phenoloxidase deposition was also evident in phagosomes after in vitro phagocytosis. Most importantly, ingested and melanised M. sydneyi were detected in vivo among hemocytes from infected oysters. Overall, the data suggest that Sydney rock oyster hemocytes can recognise and phagocytose M. sydneyi, and that resistance against QX disease may be associated with enhanced phagolysosomal activity in QXR oysters.  相似文献   

8.
Several Vibrio species are known to be pathogenic to the Pacific oyster Crassostrea gigas. Survival varies according to pathogen exposure and high mortality events usually occur in summer during gametogenesis. In order to study the effects of gametogenetic status and ploidy (a factor known to affect reproduction allocation in oysters) on vibriosis survival, we conducted two successive experiments. Our results demonstrate that a common bath challenge with pathogenic Vibriosplendidus and Vibrio aestuarianus on a mixture of mature, spawning and non-mature oysters can lead to significant mortality. Previous bath challenges, which were done using only non-mature oysters, had not produced mortality. Immunohistochemical analyses showed the affinity of Vibrio for gonadic tissues, highlighting the importance of sexual maturity for vibriosis infection processes in oysters. Mortality rate results showed poor repeatability between tanks, however, in this bath challenge. We then tested a standardized and repeatable injection protocol using two different doses of the same combination of two Vibrio species on related diploid and triploid oysters at four different times over a year. Statistical analyses of mortality kinetics over a 6-day period after injection revealed that active gametogenesis periods correspond to higher susceptibility to vibriosis and that there is a significant interaction of this seasonal effect with ploidy. However, no significant advantage of triploidy was observed. Triploid oysters even showed lower survival than diploid counterparts in winter. Results are discussed in relation to differing energy allocation patterns between diploid and triploid Pacific oysters.  相似文献   

9.
10.
The occurrence of summer mortalities of the commercially important Pacific oyster, Crassostrea gigas, has increased in recent years. These mortality events occur during the late summer when water temperatures are at their highest. Many theories have been proposed concerning the causes including reproductive stress, environmental stress, disease, or synergistic interactions of these factors. C. gigas are grown intertidally and are exposed to the air (emersed) for hours at a time. These organisms can experience extreme changes in temperature during the course of a day. An oyster closed during emersion depletes the oxygen stores to near zero within the shell and builds up CO2 causing a decrease in tissue pH. The focus of this study is to determine the respiratory (pH, Po2, Pco2 and total CO2) and immune responses of oysters exposed to air at normal seasonal temperatures, and to determine whether these stresses associated with emersion inhibit the immune system of the oyster and contribute to the summer mortalities. The respiratory variables of the hemolymph of oysters submerged at 18 °C (pH = 7.52 ± 0.04 S.E.M., Po2 = 7.09 ± 0.53 S.E.M. kPa and Pco2 = 0.20 ± 0.03 S.E.M. kPa) varied significantly from oysters emersed for four hours at 22°C (pH = 7.11 ± 0.03 S.E.M., Po2 = 3.83 ± 0.15 S.E.M. kPa, Pco2 = 0.36 ± 0.03 S.E.M. kPa) and those emersed for four hours at 30 °C (pH = 6.84 ± 0.02 S.E.M., Po2 = 3.10 ± 0.12 S.E.M. kPa, Pco2 = 1.31 ± 0.06 S.E.M. kPa). The ability of hemocytes to kill the bacterium Vibrio campbellii was assessed using an in vitro assay to generate a killing index. There was no significant difference in the killing index between pH treatment groups (p = 0.856): at pH 7.6 killing index = 50.2% ± 2.33 S.E.M., at pH 6.6 killing index = 52.3% ± 3.67 S.E.M.. Temperature was the only factor to significantly affect the killing indices among temperature and oxygen treatment groups. The killing index was lowest (29.3% ± 3.25 S.E.M.) at 30 °C and 7% oxygen, simulating in vivo oxygen pressure in well-aerated conditions and 30 °C and 3% oxygen, simulating in vivo oxygen pressure in hypoxia (30.5% ± 3.25 S.E.M.), compared with the index in 7% oxygen at low temperature (18 °C) (44.4% ± 4.50 S.E.M.) or compared with low oxygen (3%) at low temperature (18 °C) (39.7% ± 2.51 S.E.M.). The seasonal and diurnal rise in temperature may, therefore, be an important factor contributing to summer mortalities of C. gigas.  相似文献   

11.
A number of bivalve species worldwide, including the Pacific oyster, Crassostrea gigas, have been affected by mass mortality events associated with herpesviruses, resulting in significant losses. A particular herpesvirus was purified from naturally infected larval Pacific oysters, and its genome was completely sequenced. This virus has been classified as Ostreid herpesvirus 1 (OsHV-1) within the family Malacoherpesviridae. Since 2008, mass mortality outbreaks among C. gigas in Europe have been related to the detection of a variant of OsHV-1 called μVar. Additional data are necessary to better describe mortality events in relation to environmental-parameter fluctuations and OsHV-1 detection. For this purpose, a single batch of Pacific oyster spat was deployed in 4 different locations in the Marennes-Oleron area (France): an oyster pond (“claire”), a shellfish nursery, and two locations in the field. Mortality rates were recorded based on regular observation, and samples were collected to search for and quantify OsHV-1 DNA by real-time PCR. Although similar massive mortality rates were reported at the 4 sites, mortality was detected earlier in the pond and in the nursery than at both field sites. This difference may be related to earlier increases in water temperature. Mass mortality was observed among oysters a few days after increases in the number of PCR-positive oysters and viral-DNA amounts were recorded. An initial increment in the number of PCR-positive oysters was reported at both field sites during the survey in the absence of significant mortality. During this period, the water temperature was below 16°C.  相似文献   

12.
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.  相似文献   

13.
Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 104 to 3.0 × 104 CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 104 and 4.0 × 104 CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 104 CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years.  相似文献   

14.
Oysters are permanently exposed to various microbes, and their defense system is continuously solicited to prevent accumulation of invading and pathogenic organisms. Therefore, impairment of the animal's defense system usually results in mass mortalities in cultured oyster stocks or increased bacterial loads in food products intended for human consumption. In the present study, experiments were conducted to examine the effects of stress on the juvenile oyster's resistance to the oyster pathogen Vibrio splendidus. Oysters (Crassostrea gigas) were challenged with a low dose of a pathogenic V. splendidus strain and subjected to a mechanical stress 3 days later. Both mortality and V. splendidus loads increased in stressed oysters, whereas they remained low in unstressed animals. Injection of noradrenaline or adrenocorticotropic hormone, two key components of the oyster neuroendocrine stress response system, also caused higher mortality and increased accumulation of V. splendidus in challenged oysters. These results suggest that the physiological changes imposed by stress, or stress hormones, influenced host-pathogen interactions in oysters and increased juvenile C. gigas vulnerability to Vibrio splendidus.  相似文献   

15.
Many species of marine animals have larval stages whose rates of growth in the plankton are regulated by complex combinations of biological and environmental factors. In this study, we focus on the physiological bases that underlie endogenous variation in growth potential of larvae. Our approach was based on experimental crosses of gravid adults from pedigreed families of the Pacific oyster, Crassostrea gigas. This produced large numbers of larvae with different growth rates when reared under similar environmental conditions of food and temperature. A total of 35 larval families were reared to test hypotheses regarding the physiological bases of growth variation. Growth rate of these larval families varied over a five-fold range, from 3.4 (± 0.5, S.E.) to 17.6 (± 0.6) μm day− 1. The suite of integrated measurements applied to study growth variation included size, biochemical compositions, rates of particulate and dissolved nutrient acquisition, absorption efficiencies, respiration rates and enzyme activities. We show that a complex set of physiological processes regulated differences in genetically determined growth rates of larvae. One-half of the energy required for faster growth came from an enhanced, size-specific feeding ability. Differences in absorption rates were not significant for slow- and fast-growing larvae, nor were differences in size-specific respiration rates. Metabolic processes accounted for the additional 50% of the energy “savings” required to explain enhanced growth rates. We propose that different protein depositional efficiencies could account for this energy saving. Quantitative analyses of the endogenous physiological factors that cause variation in growth rate will allow for a more sophisticated understanding of growth, survival and recruitment potential of larvae.  相似文献   

16.
Mortality and biological performances of half-grown Crassostrea gigas were studied from spring 2000 to autumn 2001 at six instrumented stations located in two areas (Gefosse and Grandcamp) of the Bay of Veys (Normandy). Shell and meat growth, condition indexes and a macroscopic maturity index were determined on oysters deployed at the six stations in order to assess spatial variability in the influence of environmental conditions. In addition, histological and biochemical analyses were performed in order to determine the sex and establish the reproductive cycle (at all six sites) and the biochemical composition (at four stations). The data set including monthly mean temperatures and data provided by examination of 2,837 oysters were analysed by Principal Component Analysis and a Hierarchical Ascending Clustering which resulted in the formation of four clusters. The highest station on the shoreline belonged to a cluster characterized notably by low total weight due to a short immersion/feeding period, whereas all other stations belonged to another single cluster. Nevertheless, various biological differences were found between these stations, e.g. the reproductive cycle was generally synchronized throughout the bay but some differences relative to spawning occurrence were observed. In 2000, oyster mortality was higher at Gefosse than at Grandcamp, the latter being a more marine area. In 2001, oyster mortalities were significantly higher and all stations were strongly affected. In the Bay of Veys, oyster biological performances and mortality thus showed spatio-temporal variations which were worthy to be discussed.  相似文献   

17.
《Journal of Proteomics》2010,73(2):209-217
The Sydney rock oyster, Saccostrea glomerata, is susceptible to infection by the protozoan parasite, Marteilia sydneyi, the causative agent of QX disease. M. sydneyi infection peaks during summer when QX disease can cause up to 95% mortality. The current study takes a proteomic approach using 2-dimensional electrophoresis and mass spectrometry to identify markers of QX disease resistance among Sydney rock oysters. Proteome maps were developed for QX disease-resistant and -susceptible oysters. Six proteins in those maps were clearly associated with resistance and so were characterized by mass spectrometry. Two of the proteins (p9 and p11) were homologous to superoxide dismutase-like molecules from the Pacific oyster, Crassostrea gigas, and the Eastern oyster, Crassostrea virginica. The remaining S. glomerata proteins had no obvious similarities to known molecules in sequence databases. p9 and p11 are currently being investigated as potential markers for the selective breeding of QX disease-resistant oysters.  相似文献   

18.
Mass mortality is often observed in cultured oysters during the period following spawning in the summer season. To examine the underlying causes leading to this phenomenon, thermotolerance of the Pacific oyster Crassostrea gigas was assessed using pre- and postspawning oysters that were sequentially treated with sublethal (37 degrees C) and lethal heat shocks (44 degrees C). The effects were examined on a range of immune and metabolic parameters in addition to mortality rate. A preventative 37 degrees C significantly reduced oyster mortality after exposure to a second heat shock of 44 degrees C, but in postspawning oysters mortality remained at 80%, compared with < 10% in prespawning oysters. Levels of the 72 kDa and 69 kDa heat shock proteins were low in the gill tissue from postspawning oysters stimulated by heat shock, indicating spawning reduced heat shock protein synthesis. The postspawning oysters had depleted glycogen stores in the mantle tissue and reduced adenylate energy charge after heat shock, indicative of lower energy for metabolic activity. A cumulative effect of spawning and heat shock was observed on the immunocompetence of oysters, demonstrated by reduced hemocyte phagocytosis and hemolymph antimicrobial activity. These results support the hypothesis that the energy expended during reproduction compromises the thermotolerance and immune status of oysters, leaving them easily subject to mortality if heat stress occurs in postspawning stage. This study improves our understanding of oyster summer mortality and has implications for the long-term persistence of mollusks under the influence of global warming.  相似文献   

19.
The protozoan oyster parasite Perkinsus marinus can be cultured in vitro in a variety of media; however, this has been associated with a rapid attenuation of infectivity. Supplementation of defined media with products of P. marinus-susceptible (Crassostrea virginica) and -tolerant (Crassostrea gigas, Crassostrea ariakensis) oysters alters proliferation and protease expression profiles and induces differentiation into morphological forms typically seen in vivo. It was not known if attenuation could be reversed by host extract supplementation. To investigate correlations among these changes as well as their association with infectivity, the effects of medium supplementation with tissue homogenates from both susceptible and tolerant oyster species were examined. The supplements markedly altered both cell size and proliferation, regardless of species; however, upregulation of low-molecular-weight protease expression was most prominent with susceptible oysters extracts. Increased infectivity occurred with the use of oyster product-supplemented media, but it was not consistently associated with changes in cell size, cell morphology, or protease secretion and was not related to the susceptibility of the oyster species used as the supplement source.  相似文献   

20.
Understanding how the density and spatial arrangement of invaders is critical to developing management strategies of pest species. The Pacific oyster, Crassostrea gigas, has been translocated around the world for aquaculture and in many instances has established wild populations. Relative to other species of bivalve, it displays rapid suspension feeding, which may cause mortality of pelagic invertebrate larvae. We compared the effect on settlement of Sydney rock oyster, Saccostrea glomerata, larvae of manipulating the spatial arrangement and density of native S. glomerata, and non‐native C. gigas. We hypothesized that while manipulations of dead oysters would reveal the same positive relationship between attachment surface area and S. glomerata settlement between the two species, manipulations of live oysters would reveal differing density‐dependent effects between the native and non‐native oyster. In the field, whether oysters were live or dead, more larvae settled on C. gigas than S. glomerata when substrate was arranged in monospecific clumps. When, however, the two species were interspersed, there were no differences in larval settlement between them. By contrast, in aquaria simulating a higher effective oyster density, more larvae settled on live S. glomerata than Cgigas. When C. gigas was prevented from suspension feeding, settlement of larvae on C. gigas was enhanced. By contrast, settlement was similar between the two species when dead. While the presently low densities of the invasive oyster C. gigas may enhance S. glomerata larval settlement in east Australian estuaries, future increases in densities could produce negative impacts on native oyster settlement. Synthesis and applications: Our study has shown that both the spatial arrangement and density of invaders can influence their impact. Hence, management strategies aimed at preventing invasive populations reaching damaging sizes should not only consider the threshold density at which impacts exceed some acceptable limit, but also how patch formation modifies this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号