首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
目的:采用大肠杆菌表达系统制备人乳头瘤病毒58型(human papillomavirus type 58,HPV58)病毒样颗粒(virus-like particle,VLP)疫苗。方法:合成法获得HPV58 L1大肠杆菌密码子优化基因,构建HPV58 L1重组原核表达质粒mpET22b/HPV58 L1,检测其在BL21(DE3)中表达水平,饱和硫酸铵沉淀加阳离子交换层析法纯化蛋白后进行动态光散射(dynamic light scatter,DLS)分析。小鼠免疫后,检测免疫血清针对HPV58假病毒的中和抗体水平。结果:HPV58 L1蛋白在BL21(DE3)细胞中大部分以可溶形式表达,纯化获得的HPV58 L1蛋白可组装成水动力学直径约为74 nm的VLP。0.5μg的HPV58 L1 VLP可诱发小鼠产生高滴度的HPV58特异性中和抗体,可维持至少20周。结论:原核表达系统制备的HPV58 L1 VLP可诱发高滴度且持久的中和抗体,可用于成本低的HPV58疫苗的研究。  相似文献   

2.
Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV.  相似文献   

3.
为了评价重组大肠杆菌表达的HPV16L1蛋白和重组腺病毒表达的HPV16L1 VLP两种抗原在检测宫颈癌抗 16L1或VLP抗体及在宫颈癌血清学诊断意义上的差别 ,应用PCR技术从宫颈癌组织的DNA中扩增出全长15 35bp的HPV16L1基因片段 ,克隆至 pUC18 T载体中 ,进行DNA测序鉴定。然后 ,将HPV16L1基因克隆至pGEX 2T表达载体中 ,并诱导表达HPV16L1融合蛋白 ,分子量为 83kD ,能被HPV16L1单克隆抗体所识别。经GST柱层析法纯化后 ,与重组腺病毒表达的HPV16L1 VLP分别经酶联免疫吸附 (ELISA)法检测 12份宫颈癌患者和 35份献血员血清。 12例宫颈癌血清标本中 ,抗HPV16L1蛋白的抗体阳性率为 7例 (占 5 8.3% ) ;抗HPV16L1 VLP的抗体阳性率为 8例 (占 6 6 .7% )。经大肠杆菌表达的重组抗原HPV16L1检测为HPV16抗体IgG( )的 7份患者血清 ,利用HPV16L1 VLP试剂盒检测均阳性 ;经大肠杆菌表达的重组抗原检测为HPV16抗体IgG( )的 5份患者血清 ,利用HPV16L1 VLP试剂盒检测有 1份阳性。两者对HPV16抗体的阳性检出率并无显著差异 (P >0 .0 5 )。本实验结果说明HPV16与宫颈癌高度相关 ,利用大肠杆菌表达的重组抗原HPV16L1和HPV16L1 VLP重组抗原检测抗体的敏感性并不受影响。利用重组抗原HPV16L1对宫颈癌的抗体进行定性、定量分析有助于该疾病  相似文献   

4.
用IPTG诱导目的工程菌pQE31-HPV16L1/M15(pREP4),对表达产物进行SDSPAGE和Western blot分析;用表达的L1蛋白免疫BAL B/C小鼠得到抗血清后,利用真核源性的VLP粗提物验证小鼠抗血清的特异性.利用IMAC金属亲和层析柱纯化L1蛋白.SDSPAGE结果显示表达产物在约57 ku处有蛋白条带;Western blot结果证实此条带可与HPV16 L1蛋白的单克隆抗体反应;纯化后的L1蛋白也同样保留免疫特异性;小鼠抗血清可与HPV16L1 VLP(病毒样颗粒)发生特异性反应,证实重组表达的L1蛋白具有免疫原性.本实验表明HPV16 L1蛋白在工程菌M15(pREP4)中高效表达,为研制HPV16预防性基因工程疫苗和感染的诊断试剂提供了物质基础和技术方法.  相似文献   

5.
为预防高危型人乳头瘤病毒16型(HPV16)诱发宫颈癌,制备以减毒志贺氏杆菌为载体的HPV16预防疫苗,以期载体可介导机体产生粘膜免疫反应,达到预防HPVl6感染的目的。为此构建了以HPV16L1为免疫原的减毒志贺氏杆菌苗,并初步鉴定候选疫苗的减毒特性和免疫效果。利用基于志贺氏杆菌virG/icsA基因的表达载体(pHS3199),将HPV16L1基因插入后构成pHS3199-hpv16L1质粒,电穿孔法将其转入减毒志贺氏杆菌sh42,经筛选获得重组减毒sh42-HPV16L1工程菌。用免疫印迹法检测HPV16L1蛋白表达,连续传代法确定其传代和目的蛋白表达的稳定性;豚鼠角膜巩膜炎症试验检测细菌的毒力和菌苗的免疫效果;小鼠红细胞凝集抑制试验检测免疫血清对病毒样颗粒(VLP)的中和活性。免疫印迹检测证实,重组菌株sh42-HPV16L1可稳定表达HPV16L1;豚鼠角膜巩膜炎症试验证实,该候选菌苗无致病性。减毒sh42-HPV16L1经结膜囊途径免疫豚鼠,可以产生特异性体液免疫应答,免疫动物体内的血清、肠道、阴道分泌物中抗HPV16L1 VLPIgG、IgA含量显著高于对照组,并且sh42-HPV16L1免疫动物血清可明显抑制HPV16L1 VLP引起的小鼠红细胞凝集。因而sh42-HPV16L1将是一种潜在的HPV16候选预防疫苗。  相似文献   

6.
Cervical cancer is caused by infection with human papillomaviruses (HPV) and is a global concern, particularly in developing countries, which have ~80% of the burden. HPV L1 virus‐like particle (VLP) type–restricted vaccines prevent new infections and associated disease. However, their high cost has limited their application, and cytological screening programmes are still required to detect malignant lesions associated with the nonvaccine types. Thus, there is an urgent need for cheap second‐generation HPV vaccines that protect against multiple types. The objective of this study was to express novel HPV‐16 L1‐based chimaeras, containing cross‐protective epitopes from the L2 minor capsid protein, in tobacco plants. These L1/L2 chimaeras contained epitope sequences derived from HPV‐16 L2 amino acid 108–120, 56–81 or 17–36 substituted into the C‐terminal helix 4 (h4) region of L1 from amino acid 414. All chimaeras were expressed in Nicotiana benthamiana via an Agrobacterium‐mediated transient system and targeted to chloroplasts. The chimaeras were highly expressed with yields of ~1.2 g/kg plant tissue; however, they assembled differently, indicating that the length and nature of the L2 epitope affect VLP assembly. The chimaera containing L2 amino acids 108–120 was the most successful candidate vaccine. It assembled into small VLPs and elicited anti‐L1 and anti‐L2 responses in mice, and antisera neutralized homologous HPV‐16 and heterologous HPV‐52 pseudovirions. The other chimaeras predominantly assembled into capsomeres and other aggregates and elicited weaker humoral immune responses, demonstrating the importance of VLP assembly for the immunogenicity of candidate vaccines.  相似文献   

7.
To improve the existing human papillomavirus type16 (HPV16) virus-like particle (VLP) preparation, a highly efficient, economical and timesaving system was established. Sf-9 cells were infected with recombinant baculovirus containing the target gene encoding HPV16L1 protein with 6xHis tag, and harvested 72 h postinfection (p.i.) at 27 degrees. The ProBond(TM) purification system was used for protein purification. The molecular weight of expressed HPV16L1 protein was 58 kD as revealed by SDS-PAGE, and confirmed by Western blot. The purity of denatured and native HPVL1 proteins that were prepared were 91.9% and 71.5%, respectively, which corresponded to a yield of 2.26 mg denatured protein and 1.84 mg native protein per 2x10(7) cells. The proteins were further analyzed by mouse erythrocyte hemagglutination assay and hemagglutination inhibition assay, and there effects on VLP formation were also visualized by transmission electron microscopy. Results showed that the native protein purified was biologically active as natural HPVL1 protein, inducing the murine erythrocyte agglutination and VLP formation. In addition, the purified recombinant HPV16L1 native protein with 6xHis tag could self-assemble into virions in vitro. Hopefully, the present expression and purification system is promising to be convenient, timesaving and economical for preparation of HPV16 VLP vaccine.  相似文献   

8.
Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA. This study demonstrates that the described Avi-L1 VLP-platform may serve as a versatile system for facilitating optimal VLP-display of large and complex vaccine antigens.  相似文献   

9.
The analysis of the properties of a quadrivalent peroral vaccine against the cervical cancer, which was created in a plant expression system on the base of transgenic tomato fruits, by immunoassay and Western blot hybridization showed that the antibodies against human papilloma virus 16 L1 (HPV16 L1) actively interacted not only with the antigenic proteins HPV18 L1, HPV31 L1, and HPV45 L1, but also with the antigenic protein HPV6 L1, which belongs to another HPV family. Thus, new data on the possibility of crossreactivity between antibodies and antigens belonging to remote HPV families were obtained.  相似文献   

10.
Kim HJ  Lim SJ  Kwag HL  Kim HJ 《PloS one》2012,7(4):e35893
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.  相似文献   

11.
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.  相似文献   

12.
Human Papillomavirus (HPV), a non-enveloped, double-stranded DNA virus, is responsible for 5% of human cancers. The HPV capsid consists of major and minor structural proteins, L1 and L2. L1 proteins form an icosahedral shell with building blocks of the pentameric capsomere, and one L2 molecule extends outward from the central hole of the capsid. Thus, L2 is concealed within L1 and only becomes exposed when the capsid interacts with host cells. The low antigenic variation of L2 means that this protein could offer a target for the development of a pan-HPV vaccine. Toward this goal, here we describe an anti-L2 monoclonal antibody, 14H6, which broadly neutralizes at least 11 types of HPV, covering types 6, 11, 16, 18, 31, 33, 35, 45, 52, 58 and 59, in pseudovirion—based cell neutralization assay. The mAb 14H6 recognizes a minimal linear epitope located on amino acids 21 to 30 of the L2 protein. Alanine scanning mutagenesis and sequence alignment identified several conserved residues (Cys22, Lys23, Thr27, Cys28 and Pro29) that are involved in the 14H6 binding with L2. The epitope was grafted to several scaffolding proteins, including HPV16 L1 virus-like particles, HBV 149 core antigen and CRM197. The resultant chimeric constructs were expressed in Escherichia coli and purified with high efficiency. Immunization with these pan-HPV vaccine candidates elicited high titers of the L2-specific antibody in mice and conferred robust (3-log) titers of cross-genotype neutralization, including against HPV11, 16, 18, 45, 52, 58 and 59. These findings will help in the development of an L2-based, pan-HPV vaccine.  相似文献   

13.
We generated a monoclonal antibody, RG-1, that binds to highly conserved L2 residues 17 to 36 and neutralizes human papillomavirus 16 (HPV16) and HPV18. Passive immunotherapy with RG-1 was protective in mice. Antiserum to the HPV16 L2 peptide comprising residues 17 to 36 (peptide 17-36) neutralized pseudoviruses HPV5, HPV6, HPV16, HPV 18, HPV31, HPV 45, HPV 52, HPV 58, bovine papillomavirus 1, and HPV11 native virions. Depletion of HPV16 L2 peptide 17-36-reactive antibodies from cross-neutralizing rabbit and human L2-specific sera abolished cross-neutralization and drastically reduced neutralization of the cognate type. This cross-neutralization of diverse HPVs associated with cervical cancer, genital warts, and epidermodysplasia verruciformis suggests the possibility of a broadly protective, peptide-based vaccine.  相似文献   

14.
The L1 genes of two human papillomavirus type 16 (HPV16) isolates derived from condylomata acuminata were used to express the L1 major capsid protein in insect cells via recombinant baculoviruses. Both L1 major capsid proteins self-assembled into virus-like particles (VLP) with high efficiency and could be purified in preparative amounts on density gradients. The yield of VLP was 3 orders of magnitude higher than what has been obtained previously, using L1 derived from the prototype HPV16. DNA sequence comparison identified a single nonconserved amino acid change to be responsible for the inefficient self-assembly of the prototype L1. VLP were also obtained by expressing L1 of HPV6, HPV11, and cottontail rabbit papillomavirus, indicating that L1 from a variety of papillomaviruses has the intrinsic capacity to self-assemble into VLP. Coexpression of HPV16 L1 plus L2 by using a baculovirus double-expression vector also resulted in efficient self-assembly of VLP, and the average particle yield increased about fourfold in comparison to when L1 only was expressed. Coimmunoprecipitation of L1 and L2 and cosedimentation of the two proteins in a sucrose gradient demonstrated that L2 was incorporated into the particles. The ability to generate preparative amounts of HPV16 L1 and L1-L2 VLP may have implications for the development of a serological assay to detect anti-HPV16 virion immune responses to conformational epitopes and for immunoprophylaxis against HPV16 infection.  相似文献   

15.
The amino (N) terminus of the human papillomavirus (HPV) minor capsid protein L2 can induce low-titer, cross-neutralizing antibodies. The aim of this study was to improve immunogenicity of L2 peptides by surface display on highly ordered, self-assembled virus-like particles (VLP) of major capsid protein L1, and to more completely characterize neutralization epitopes of L2. Overlapping peptides comprising amino acids (aa) 2 to 22 (hereafter, chimera or peptide 2-22), 13 to 107, 18 to 31, 17 to 36, 35 to 75, 75 to 112, 115 to 154, 149 to 175, and 172 to 200 of HPV type 16 (HPV16) L2 were genetically engineered into the DE surface loop of bovine papillomavirus type 1 L1 VLP. Except for chimeras 35-75 and 13-107, recombinant fusion proteins assembled into VLP. Vaccination of rabbits with Freund''s adjuvanted native VLP induced higher L2-specific antibody titers than vaccination with corresponding sodium dodecyl sulfate-denatured proteins. Immune sera to epitopes within residues 13 to 154 neutralized HPV16 in pseudovirion neutralization assays, whereas chimera 17-36 induced additional cross-neutralization to divergent high-risk HPV18, -31, -45, -52, and -58; low-risk HPV11; and beta-type HPV5 (titers of 50 to 10,000). Aluminum hydroxide-monophosphoryl lipid A (Alum-MPL)-adjuvanted VLP induced similar patterns of neutralization in both rabbits and mice, albeit with 100-fold-lower titers than Freund''s adjuvant. Importantly, Alum-MPL-adjuvanted immunization with chimeric HPV16L1-HPV16L2 (peptide 17-36) VLP induced neutralization or cross-neutralization of HPV16, -18, -31, -45, -52, and -58; HPV6 and -11; and HPV5 (titers of 50 to 100,000). Immunization with HPV16 L1-HPV16 L2 (chimera 17-36) VLP in adjuvant applicable for human use induces broad-spectrum neutralizing antibodies against HPV types evolutionarily divergent to HPV16 and thus may protect against infection with mucosal high-risk, low-risk, and beta HPV types and associated disease.The more than 100 types of human papillomaviruses (HPV) identified to date (14) are the etiological agents of skin and mucosal papillomas or warts. Persistent infection with high-risk mucosal types, most often HPV type 16 (HPV16) and HPV18, causes cervical cancer, which constitutes the second leading fatal cancer in women worldwide, causing 274,000 deaths per year. Substantial morbidity results from other noncervical HPV-related conditions, such as anogenital warts or anal cancer (23).The development of current prophylactic papillomavirus vaccines was launched by observations that recombinantly expressed major capsid protein L1 self-assembles into virus-like particles (VLP). These empty viral capsids are composed of 360 L1 molecules and resemble native virions in both structure and immunogenicity, yet are nononcogenic and noninfectious. Moreover, VLP cannot replicate because the cells in which VLP are made contain only L1 and no other papillomavirus genes. Subunit VLP vaccines induce high-titer and type-restricted antibody responses to conformational L1 epitopes (12, 26, 39, 44). When applied to women prior to infection, available vaccines targeting the most prevalent high-risk types, HPV16 and HPV18, have demonstrated up to 100% efficacy against persistent infection and associated disease caused by the included types and thus are potentially able to prevent ∼70% of cervical high-grade dysplasias and probably cancers (22, 46). Therefore, use of currently licensed L1 vaccines necessitates continuation of cytological cervical screening of women. The prevention of 96% of cervical cancer would require immunity to seven high-risk HPV types (HPV16, -18, -31, -33, -45, -52, and -58) (32) and the development of more highly multivalent (and presumably costly) L1 VLP vaccines.The search for alternative broader-spectrum immunogens drew attention to the minor capsid protein L2, which is immunogenically subdominant in the context of coexpressed L1-L2 capsids (38). Immunization of animals with the amino (N)-terminal peptide of L2 demonstrated its ability to elicit low-titer neutralizing antibodies that protect against challenge with cognate papillomavirus types in vivo (16, 19), cross-neutralize heterologous types in vitro (25, 33, 38), and confer cross-protection in vivo (17).This study addresses two major issues that may further the development of L2-based broader-spectrum vaccines. First, the N terminus of L2 is more closely examined for potential neutralization epitopes, by incorporating peptides into papillomavirus VLP as peptide-presenting platforms (7, 21, 42). Moreover, we take advantage of the immunogenic characteristics of virion surfaces, such as the dense repetitive surface array of VLP, to induce strong and enduring immune responses to displayed L2 epitopes.  相似文献   

16.
Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV) as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1) and 3.9-(HPV18L1) fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines.  相似文献   

17.

Background

Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against virus-like particles (VLP) representing these genotypes. The vaccines also confer a degree of cross-protection against HPV31 and HPV45, which are genetically-related to the vaccine types HPV16 and HPV18, respectively, although the mechanism is less certain. There are a number of humoral immune measures that have been examined in relation to the HPV vaccines, including VLP binding, pseudovirus neutralization and the enumeration of memory B cells. While the specificity of responses generated against the vaccine genotypes are fairly well studied, the relationship between these measures in relation to non-vaccine genotypes is less certain.

Methods

We carried out a comparative study of these immune measures against vaccine and non-vaccine genotypes using samples collected from 12–15 year old girls following immunization with three doses of either Cervarix® or Gardasil® HPV vaccine.

Results

The relationship between neutralizing and binding antibody titers and HPV-specific memory B cell levels for the vaccine genotypes, HPV16 and HPV18, were very good. The proportion of responders approached 100% for both vaccines while the magnitude of these responses induced by Cervarix® were generally higher than those following Gardasil® immunization. A similar pattern was found for the non-vaccine genotype HPV31, albeit at a lower magnitude compared to its genetically-related vaccine genotype, HPV16. However, both the enumeration of memory B cells and VLP binding responses against HPV45 were poorly related to its neutralizing antibody responses. Purified IgG derived from memory B cells demonstrated specificities similar to those found in the serum, including the capacity to neutralize HPV pseudoviruses.

Conclusions

These data suggest that pseudovirus neutralization should be used as the preferred humoral immune measure for studying HPV vaccine responses, particularly for non-vaccine genotypes.  相似文献   

18.
Two new vaccines have been recently licensed : a quadrivalent vaccine against Human papillomavirus infections (HPV) 6, 11, 16 and 18, recommended to children from 9 years old and to young adults under the age of 26 years, and a vaccine against herpes zoster for adults from 60 years old onwards. A bivalent vaccine against HPV 16 and 18 will be shortly available. HPV vaccines are composed of the L1 structural proteins of 2 or 4 HPV genotypes, produced by genetic engineering and self-assembled. These inert vaccines are devoid of genetic materials and mimic the viral particle (virus-like particle, VLP). They allow, as suggested by the 4.5 to 5 years follow-up, to prevent HPV infections and the onset of pre-cancerous lesions associated with genotypes contained within the vaccine. They represent a major overhang in the vaccinology field, and, as anti-hepatitis B vaccine, will probably be effective in cancer prevention. Their use must be associated with the continued detection of cervix cancer by smears and also with the prevention of other sexually transmitted diseases. The herpes zoster vaccine is a living attenuated vaccine produced from the OKA/Merck strain already used in the vaccine against varicella. Its safety is good among persons 50 years old and over and its efficiency on lowering herpes zoster incidence, on the burden of illness and on post-herpetic neuralgia has been demonstrated in persons over 60 years old.  相似文献   

19.
Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.  相似文献   

20.
人乳头瘤病毒16型假病毒中和实验的建立和初步应用   总被引:4,自引:0,他引:4  
探讨了应用多质粒磷酸钙共转染方法在293FT细胞中生产HPV16(human papillomavirus type 16)假病毒。蛋白印迹检测显示在转染后细胞的裂解上清中具有很好的L1蛋白活性,通过透射电镜可观察到形态与天然病毒粒子相似的假病毒颗粒。对293FT细胞的感染实验显示,该假病毒可有效将EGFP报告质粒导入靶细胞中进行表达,经测定其滴度约为2×107TU/mL。通过与4株HPV16对照单抗的中和实验证明该假病毒可有效应用于中和实验。应用该方法从18株抗HPV16L1的单克隆抗体中鉴定获得了2株中和单抗3D10、PD1。所建立的HPV16假病毒生产和中和实验方法具有快速高效、低成本和易于检测的优点,适于进行较大规模应用,为快速准确鉴定HPV16中和单抗和候选疫苗的免疫保护效果提供了有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号