首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
The last century has witnessed a substantial improvement in yield potential, quality and disease resistance in crops. This was indeed the outcome of conventional breeding, which was achieved with little or no knowledge of underlying physiological and biochemical phenomena related to a trait. Also the resources utilized on programs involving conventional breeding were not of great magnitude. Plant breeders have also been successful during the last century in producing a few salt-tolerant cultivars/lines of some potential crops through conventional breeding, but this again has utilized modest resources. However, this approach seems now inefficient due to a number of reasons, and alternatively, genetic engineering for improving crop salt tolerance is being actively followed these days by the plant scientists, world-over. A large number of transgenic lines with enhanced salt tolerance of different crops can be deciphered from the literature but up to now only a very few field-tested cultivars/lines are known despite the fact that considerable resources have been expended on the sophisticated protocols employed for generating such transgenics. This review analytically compares the achievements made so far in terms of producing salt-tolerant lines/cultivars through conventional breeding or genetic engineering.  相似文献   

2.
Undoubtedly, drought is one of the prime abiotic stresses in the world. Crop yield losses due to drought stress are considerable. Although a variety of approaches have been used to alleviate the problem of drought, plant breeding, either conventional breeding or genetic engineering, seems to be an efficient and economic means of tailoring crops to enable them to grow successfully in drought-prone environments. During the last century, although plant breeders have made ample progress through conventional breeding in developing drought tolerant lines/cultivars of some selected crops, the approach is, in fact, highly time-consuming and labor- and cost-intensive. Alternatively, marker-assisted breeding (MAB) is a more efficient approach, which identifies the usefulness of thousands of genomic regions of a crop under stress conditions, which was, in reality, previously not possible. Quantitative trait loci (QTL) for drought tolerance have been identified for a variety of traits in different crops. With the development of comprehensive molecular linkage maps, marker-assisted selection procedures have led to pyramiding desirable traits to achieve improvements in crop drought tolerance. However, the accuracy and preciseness in QTL identification are problematic. Furthermore, significant genetic × environment interaction, large number of genes encoding yield, and use of wrong mapping populations, have all harmed programs involved in mapping of QTL for high growth and yield under water limited conditions. Under such circumstances, a transgenic approach to the problem seems more convincing and practicable, and it is being pursued vigorously to improve qualitative and quantitative traits including tolerance to biotic and abiotic stresses in different crops. Rapid advance in knowledge on genomics and proteomics will certainly be beneficial to fine-tune the molecular breeding and transformation approaches so as to achieve a significant progress in crop improvement in future. Knowledge of gene regulation and signal transduction to generate drought tolerant crop cultivars/lines has been discussed in the present review. In addition, the advantages and disadvantages as well as future prospects of each breeding approach have also been discussed.  相似文献   

3.
It is more important to improve the salt tolerance of crops in a salinized world with the situations of increasing populations, declining crop yields, and a decrease in agricultural lands. Attempts to produce salt-tolerant crops have involved the manipulation of existing crops through conventional breeding, genetic engineering and marker-assisted selection (MAS). However, these have, so far, not produced lines growing on highly saline water. Hence, the domestication of wild halophytes as crops appears to be a feasible way to develop agriculture in highly saline environments. In this review, at first, the assessment criteria of salt tolerance for halophytes are discussed. The traditional criteria for the classification of salinity in crops are less applicable to strong halophytes with cubic growth curves at higher salinities. Thus, realistic assessment criteria for halophytes should be evaluated at low and high salinity levels. Moreover, absolute growth rather than relative growth in fields during a crop's life cycle should be considered. Secondly, the use of metabolomics to understand the mechanisms by which halophytes respond to salt tolerance is highlighted as is the potential for metabolomics-assisted breeding of this group of plants. Metabolomics provides a better understanding of the changes in cellular metabolism induced by salt stress. Identification of metabolic quantitative trait loci (QTL) associated with salt tolerance might provide a new method to aid the selection of halophyte improvement. Thirdly, the identification of germplasm-regression-combined (GRC) marker-trait association and its potential to identifying markers associated with salt tolerance is outlined. Results of MAS/linkage map-QTL have been modest because of the absence of QTLs with tight linkage, the non-availability of mapping populations and the substantial time needed to develop such populations. To overcome these limitations, identification by GRC-based marker-trait association has been successfully applied to many plant traits, including salt tolerance. Finally, we provide a prospect on the challenges and opportunities for halophyte improvement, especially in the integration of metabolomics- and GRC-marker-assisted selection towards new or unstudied halophyte breeding, for which no other genetic information, such as linkage maps and QTL, are available.  相似文献   

4.
Salinity stress is a major limitation in barley production. Substantial genetic variation in tolerance occurs among genotypes of barley, so the development of salt-tolerant cultivars is a potentially effective approach for minimizing yield losses. The lack of economically viable methods for screening salinity tolerance in the field remains an obstacle to breeders, and molecular marker-assisted selection is a promising alternative. In this study, salinity tolerance of 172 doubled-haploid lines generated from YYXT (salinity-tolerant) and Franklin (salinity-sensitive) was assessed in glasshouse trials during the vegetative phase. A high-density genetic linkage map was constructed from 76 pairs of simple sequence repeats and 782 Diversity Arrays Technology markers which spanned a total of 1,147 cM. Five significant quantitative trait loci (QTL) for salinity tolerance were identified on chromosomes 1H, 2H, 5H, 6H and 7H, accounting for more than 50% of the phenotypic variation. The tolerant variety, YYXT, contributed the tolerance to four of these QTL and Franklin contributed the tolerance to one QTL on chromosome 1H. Some of these QTL mapped to genomic regions previously associated with salt tolerance in barley and other cereals. Markers associated with the major QTL identified in this study have potential application for marker-assisted selection in breeding for enhanced salt tolerance in barley.  相似文献   

5.
Improving salinity tolerance in crop plants: a biotechnological view   总被引:1,自引:0,他引:1  
Salinity limits the production capabilities of agricultural soils in large areas of the world. Both breeding and screening germplasm for salt tolerance encounter the following limitations: (a) different phenotypic responses of plants at different growth stages, (b) different physiological mechanisms, (c) complicated genotype × environment interactions, and (d) variability of the salt-affected field in its chemical and physical soil composition. Plant molecular and physiological traits provide the bases for efficient germplasm screening procedures through traditional breeding, molecular breeding, and transgenic approaches. However, the quantitative nature of salinity stress tolerance and the problems associated with developing appropriate and replicable testing environments make it difficult to distinguish salt-tolerant lines from sensitive lines. In order to develop more efficient screening procedures for germplasm evaluation and improvement of salt tolerance, implementation of a rapid and reliable screening procedure is essential. Field selection for salinity tolerance is a laborious task; therefore, plant breeders are seeking reliable ways to assess the salt tolerance of plant germplasm. Salt tolerance in several plant species may operate at the cellular level, and glycophytes are believed to have special cellular mechanisms for salt tolerance. Ion exclusion, ion sequestration, osmotic adjustment, macromolecule protection, and membrane transport system adaptation to saline environments are important strategies that may confer salt tolerance to plants. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches. The first approach is selection of mutant cell lines from cultured cells and plant regeneration from such cells (somaclones). In vitro screening of plant germplasm for salt tolerance is the second approach, and a successful employment of this method in durum wheat is presented here. Doubled haploid lines derived from pollen culture of F1 hybrids of salt-tolerant parents are promising tools to further improve salt tolerance of plant cultivars. Enhancement of resistance against both hyper-osmotic stress and ion toxicity may also be achieved via molecular breeding of salt-tolerant plants using either molecular markers or genetic engineering.  相似文献   

6.
Gene Expression Profiling of Plants under Salt Stress   总被引:1,自引:0,他引:1  
  相似文献   

7.
Role of transgenic plants in agriculture and biopharming   总被引:1,自引:0,他引:1  
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.  相似文献   

8.
Increased salt tolerance is needed for crops grown in areas at risk of salinisation. This requires new genetic sources of salt tolerance, and more efficient techniques for identifying salt-tolerant germplasm, so that new genes for tolerance can be introduced into crop cultivars. Screening a large number of genotypes for salt tolerance is not easy. Salt tolerance is achieved through the control of salt movement into and through the plant, and salt-specific effects on growth are seen only after long periods of time. Early effects on growth and metabolism are likely due to osmotic effects of the salt, that is to the salt in the soil solution. To avoid the necessity of growing plants for long periods of time to measure biomass or yield, practical selection techniques can be based on physiological traits. We illustrate this with current work on durum wheat, on selection for the trait of sodium exclusion. We have explored a wide range of genetic diversity, identified a new source of sodium exclusion, confirmed that the trait has a high heritability, checked for possible penalties associated with the trait, and are currently developing molecular markers. This illustrates the potential for marker-assisted selection based on sound physiological principles in producing salt-tolerant crop cultivars.  相似文献   

9.
Developing salt-tolerant crop plants: challenges and opportunities   总被引:19,自引:0,他引:19  
Soil salinity, one of the major abiotic stresses reducing agricultural productivity, affects large terrestrial areas of the world; the need to produce salt-tolerant crops is evident. Two main approaches are being used to improve salt tolerance: (i) the exploitation of natural genetic variations, either through direct selection in stressful environments or through mapping quantitative trait loci and subsequent marker-assisted selection; and (ii) the generation of transgenic plants to introduce novel genes or to alter expression levels of the existing genes to affect the degree of salt stress tolerance. Here, we discuss the challenges and opportunities provided by recently developed functional tools for the development of salt-tolerant crops.  相似文献   

10.
With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.  相似文献   

11.
Plant hormones regulate plant growth and development by affecting an array of cellular, physiological, and developmental processes, including, but not limited to, cell division and elongation, stomatal regulation, photosynthesis, transpiration, ion uptake and transport, initiation of leaf, flower and fruit development, and senescence. Environmental factors such as salinity, drought, and extreme temperatures may cause a reduction in plant growth and productivity by altering the endogenous levels of plant hormones, sensitivity to plant hormones, and/or signaling pathways. Molecular and physiological studies have determined that plant hormones and abiotic stresses have interactive effects on a number of basic biochemical and physiological processes, leading to reduced plant growth and development. Various strategies have been considered or employed to maximize plant growth and productivity under environmental stresses such as salt-stress. A fundamental approach is to develop salt-tolerant plants through genetic means. Breeding for salt tolerance, however, is a long-term endeavor with its own complexities and inherent difficulties. The success of this approach depends, among others, on the availability of genetic sources of tolerance and reliable screening techniques, identification and successful transfer of genetic components of tolerance to desired genetic backgrounds, and development of elite breeding lines and cultivars with salt tolerance and other desirable agricultural characteristics. Such extensive processes have delayed development of successful salt-tolerant cultivars in most crop species. An alternative and technically simpler approach is to induce salt tolerance through exogenous application of certain plant growth–regulating compounds. This approach has gained significant interest during the past decade, when a wealth of new knowledge has become available on the beneficial roles of the six classes of plant hormones (auxins, gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids) as well as several other plant growth–regulating substances (jasmonates, salicylates, polyamines, triacontanol, ascorbic acid, and tocopherols) on plant stress tolerance. Among these, brassinosteroids (BRs) and salicylic acid (SA) have been studied most extensively. Both BRs and SA are ubiquitous in the plant kingdom, affecting plant growth and development in many different ways, and are known to improve plant stress tolerance. In this article, we review and discuss the current knowledge and possible applications of BRs and SA that could be used to mitigate the harmful effects of salt-stress in plants. We also discuss the roles of exogenous applications of BRs and SA in the regulation of various biochemical and physiological processes leading to improved salt tolerance in plants.  相似文献   

12.
This article represents some current thinking and objectives in the use of molecular markers to abiotic stress tolerance. Barley has been chosen for study as it is an important crop species, as well as a model for genetic and physiological studies. It is an important crop and, because of its well-studied genetics and physiology, is an excellent candidate in which to devise more efficient breeding methods. Abiotic stress work on cultivated gene pools of small grain cereals frequently shows that adaptive and developmental genes are strongly associated with responses. Developmental genes have strong pleiotropic effects on a number of performance traits, not just abiotic stresses. One concern is that much of the genetic variation for improving abiotic stress tolerance has been lost during domestication, selection and modern breeding, leaving pleiotropic effects of the selected genes for development and adaptation. Such genes are critical in matching cultivars to their target agronomic environment, and since there is little leverage in changing these, other sources of variation may be required. In barley, and many other crops, greater variation to abiotic stresses exists in primitive landraces and related wild species gene pools. Wild barley, Hordeum spontaneum C. Koch is the progenitor of cultivated barley, Hordeum vulgare L. and is easily hybridized to H. vulgare. Genetic fingerprinting of H. spontaneum has revealed genetic marker associations with site-of-origin ecogeographic factors and also experimentally imposed stresses. Genotypes and collection sites have been identified which show the desired variation for particular stresses. Doubled haploid and other segregating populations, including landrace derivatives have been used to map genetically the loci involved. These data can be used in molecular breeding approaches to improve the drought tolerance of barley. One strategy involves screening for genetic markers and physiological traits for drought tolerance, and the associated problem of drought relief-induced mildew susceptibility in naturally droughted fields of North Africa.  相似文献   

13.
14.
Ensuring adequate food production is a major issue in the context of an increasing human population, limit to the areas of new land that can be cultivated, and loss of existing cultivated lands to abiotic stresses. Of these stresses, salinity consistently has the greatest impact in reducing the area of cultivated land, often due to inappropriate irrigation techniques. To increase food supply, there is a need to produce salt-tolerant crops, which can grow successfully on salt-affected lands. Among crops, vegetables possess a central position in the human diet because of their nutritional value providing vitamins, carbohydrates, proteins, and mineral nutrients. There are many vegetable crops of local importance around the world but others that are very widely cultivated. All of these vegetable crops are affected by salinity more or less severely. Salinity affects every aspect of vegetable crop development including their morphology, physiological function and yield. Although efforts have been made to understand the mechanisms of salt tolerance in vegetable crops, less attention has been paid to these than to the staple crops. Where attempts have been made to improve salt tolerance of vegetables, the strategies have ranged from exogenous application of fertilizers, compatible solutes or plant growth regulators, to use of advanced molecular techniques for genetic modifications. This review focuses on the responses of pea, okra, tomato, eggplant, pepper, carrot, broccoli, cauliflower, and potato to salt stress and the strategies being used to enhance their salt tolerance.  相似文献   

15.
Recent Advances in Genetics of Salt Tolerance in Tomato   总被引:13,自引:0,他引:13  
Salinity is an important environmental constraint to crop productivity in arid and semi-arid regions of the world. Most crop plants, including tomato, Lycopersicon esculentum Mill., are sensitive to salinity throughout the ontogeny of the plant. Despite considerable research on salinity in plants, there are only a few instances where salt-tolerant cultivars have been developed. This is due in part to the complexity of the trait. A plant's response to salt stress is modulated by many physiological and agronomical characteristics, which may be controlled by the actions of several to many genes whose expressions are influenced by various environmental factors. In addition, salinity tolerance is a developmentally regulated, stage-specific phenomenon; tolerance at one stage of plant development is often not correlated with tolerance at other stages. Specific ontogenic stages should be evaluated separately for the assessment of tolerance and the identification, characterization, and utilization of useful genetic components. In tomato, genetic resources for salt tolerance have been identified largely within the related wild species, and considerable efforts have been made to characterize the genetic controls of tolerance at various developmental stages. For example, the inheritance of several tolerance-related traits has been determined and quantitative trait loci (QTLs) associated with tolerance at individual developmental stages have been identified and characterized. It has been determined that at each stage salt tolerance is largely controlled by a few QTLs with major effects and several QTLs with smaller effects. Different QTLs have been identified at different developmental stages, suggesting the absence of genetic relationships among stages in tolerance to salinity. Furthermore, it has been determined that in addition to QTLs which are population specific, several QTLs for salt tolerance are conserved across populations and species. Research is currently underway to develop tomatoes with improved salt tolerance throughout the ontogeny of the plant by pyramiding QTLs through marker-assisted selection (MAS). Transgenic approaches also have been employed to gain a better understanding of the genetics of salt tolerance and to develop tomatoes with improved tolerance. For example, transgenic tomatoes with overexpression of a single-gene-controlled vacuolar Na+/H+ antiport protein, transferred from Arabidopsis thaliana, have exhibited a high level of salt tolerance under greenhouse conditions. Although transgenic plants are yet to be examined for field salt tolerance and salt-tolerant tomatoes are yet to be developed by MAS, the recent genetic advances suggest a good prospect for developing commercial cultivars of tomato with enhanced salt tolerance in near future.  相似文献   

16.
Soil salinization is one of the major problems in global agricultural production. Cotton is a pioneer crop with regard to salt stress tolerance, and can be used for saline-alkali land improvement. The large-scale detection of salt tolerance traits in cotton accessions, and the identification of elite quantitative trait loci (QTLs)/genes for salt-tolerance have been very important in salt tolerance breeding. Here, 43 advanced salt-tolerant and 31 highly salt-sensitive cultivars were detected by analyzing ten salt tolerance related traits in 304 upland cotton cultivars. Among them, 11 advanced salt-tolerance and eight highly salt-sensitive cultivars were consistent with previously reported results. Association analysis of ten salt-tolerance related traits and 145 SSRs was performed, and a total of 95 significant associations were detected; 17, 41, and 37 of which were associated with germinative index, seedling stage physiological index, and four seedling stage biochemical indexes, respectively. Of these associations, 20 SSR loci were simultaneously associated with two or more traits. Furthermore, we detected 117 elite alleles associated with salt-tolerance traits, 4 of which were reported previously. Among these loci, 44 (37.60%) were rare alleles with a frequency of less than 5%, 6 only existed in advanced salt-tolerant cultivars, and 2 only in highly salt-sensitive cultivars. As a result, 13 advanced salt-tolerant cultivars were selected to assemble the optimal cross combinations by computer simulation for the development of salt-tolerant accessions. This study lays solid foundations for further improvements in cotton salt-tolerance by referencing elite germplasms, alleles associated with salt-tolerance traits, and optimal crosses.  相似文献   

17.
耐非生物胁迫转基因水稻的培育——现在和未来   总被引:1,自引:0,他引:1  
环境胁迫严重降低了作物产量,日益减少的耕地和膨胀的人口对世界粮食安全造成了威胁。长期以来,改善作物的抗逆性一直是农业生产的主要目标。水稻是重要的粮食作物之一,培育具有抗逆性的水稻品种对全球的粮食生产将产生重要影响。在改善水稻的抗逆性方面,转基因比传统方法更有发展潜力。近年来,已有许多抗逆相关基因转入水稻并获得了一些提高抗逆性的转基因植株,文章重点讨论了耐非生物胁迫转基因水稻的研究进展。  相似文献   

18.
Some important physiological selection criteria for salt tolerance in plants   总被引:13,自引:0,他引:13  
Muhammad Ashraf   《Flora》2004,199(5):361-376
Undoubtedly, plant breeders have made a significant achievement in the past few years, improving salinity tolerance in a number of potential crops using artificial selection and conventional breeding approaches, although molecular biology approaches are currently being intensively pursued for achieving this goal. However, most of the selection procedures used so far, were based merely on differences in agronomic characters. Agronomic characters represent the combined genetic and environmental effects on plant growth, and include the integration of the physiological phenomena conferring salinity tolerance. In fact, physiological criteria are able to supply more reliable information than agronomic characters. Although there are large numbers of reports in the literature mainly dealing with water relations, photosynthesis, and accumulation of various inorganic ions and organic metabolites in individual crops, there is little information available on the use of these attributes as selection criteria for improving salt tolerance through selection and breeding programs. In this review, the major adaptive components of salt tolerance such as osmotic adjustment, photosynthesis, water relations and ion relations are reviewed. In view of the complexity of salt tolerance and its great variation at intra-specific and inter-specific levels, it is difficult to identify single criteria, which could be used as effective selection targets. Rather it is most meaningful if physiological and biochemical indicators for individual species are determined rather than generic indicators.  相似文献   

19.
20.
Brassica oilseed species now hold the third position among oilseed crops and are an important source of vegetable oil. The most common Brassica oil-seed crops grown for commercial purposes are rape seeds, (Brassica campestris L. and B. napus L.) and mustards (B. juncea (L.) Czern. & Coss. and B. carinata A.Br.). The other Brassica species such as B. nigra (L.) Koch and B. tournefortii Gouan are grown on a very small scale. Brassica napus, B. juncea, and B. carinata are amphidiploids, whereas B. campestris and B. nigra are diploid. Most of the Brassica species have been categorized as moderately salt tolerant, with the amphidiploid species being the relatively salt tolerant in comparison with the diploid species. Due to the higher salt tolerance of the amphidiploids, it has been suggested that their salt tolerance has been acquired from the A (B. campestris) and C (B. oleracea L.) genomes. However, significant inter- and intraspecific variation for salt tolerance exists within brassicas, which can be exploited through selection and breeding for enhancing salt tolerance of the crops. There are contrasting reports regarding the response of these species to salinity at different plant developmental stages, but in most of them it is evident that they maintain their degree of salt tolerance consistently throughout the plant ontogeny. The pattern of uptake and accumulation of toxic ions (Na+ and Cl?), in tissues of plants subjected to saline conditions appears to be mostly due to mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in most of the species, although ion inclusion in some cases at intraspecific levels has also been observed. Maintenance of high tissue K+/Na+ and Ca2 +/Na+ ratios has been suggested as an important selection criterion for salt-tolerance in brassicas. Osmotic adjustment has also been reported in Brassica plants subjected to saline conditions, but particularly to a large extent in salt-tolerant species or cultivars. The roles of important organic osmotica such as total soluble sugars, free amino acids, and free proline, which are central to osmotic adjustment, have been discussed. In canola, B. napus, no positive relationship has been observed between salt tolerance and erucic acid content of seed oil in different cultivars. Furthermore, glucosinolate content of the seed meal in canola generally increases with an increase in salt level of the growth medium. This review highlights the responses of potential Brassica crops to soil salinity from the whole plant to the molecular level. It also describes the efforts made during the past millennium in uncovering the mechanism(s) of salinity tolerance of these crops both at the whole plant and cellular levels. The important selection criteria, which are used by researchers to enhance the degree of salinity tolerance in brassicas, are summarized. In addition, the vital role of genetic engineering and molecular biology approaches to the improvement of salt tolerance in brassicas is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号