首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Salinity Tolerance in Brassica Oilseeds
Authors:M Ashraf  T McNeilly
Institution:1. Department of Botany, University of Agriculture , Faisalabad, Pakistan;2. School of Biological Sciences, University of Liverpool , Liverpool, UK , L69 3BX
Abstract:Brassica oilseed species now hold the third position among oilseed crops and are an important source of vegetable oil. The most common Brassica oil-seed crops grown for commercial purposes are rape seeds, (Brassica campestris L. and B. napus L.) and mustards (B. juncea (L.) Czern. & Coss. and B. carinata A.Br.). The other Brassica species such as B. nigra (L.) Koch and B. tournefortii Gouan are grown on a very small scale. Brassica napus, B. juncea, and B. carinata are amphidiploids, whereas B. campestris and B. nigra are diploid. Most of the Brassica species have been categorized as moderately salt tolerant, with the amphidiploid species being the relatively salt tolerant in comparison with the diploid species. Due to the higher salt tolerance of the amphidiploids, it has been suggested that their salt tolerance has been acquired from the A (B. campestris) and C (B. oleracea L.) genomes. However, significant inter- and intraspecific variation for salt tolerance exists within brassicas, which can be exploited through selection and breeding for enhancing salt tolerance of the crops. There are contrasting reports regarding the response of these species to salinity at different plant developmental stages, but in most of them it is evident that they maintain their degree of salt tolerance consistently throughout the plant ontogeny. The pattern of uptake and accumulation of toxic ions (Na+ and Cl?), in tissues of plants subjected to saline conditions appears to be mostly due to mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in most of the species, although ion inclusion in some cases at intraspecific levels has also been observed. Maintenance of high tissue K+/Na+ and Ca2 +/Na+ ratios has been suggested as an important selection criterion for salt-tolerance in brassicas. Osmotic adjustment has also been reported in Brassica plants subjected to saline conditions, but particularly to a large extent in salt-tolerant species or cultivars. The roles of important organic osmotica such as total soluble sugars, free amino acids, and free proline, which are central to osmotic adjustment, have been discussed. In canola, B. napus, no positive relationship has been observed between salt tolerance and erucic acid content of seed oil in different cultivars. Furthermore, glucosinolate content of the seed meal in canola generally increases with an increase in salt level of the growth medium. This review highlights the responses of potential Brassica crops to soil salinity from the whole plant to the molecular level. It also describes the efforts made during the past millennium in uncovering the mechanism(s) of salinity tolerance of these crops both at the whole plant and cellular levels. The important selection criteria, which are used by researchers to enhance the degree of salinity tolerance in brassicas, are summarized. In addition, the vital role of genetic engineering and molecular biology approaches to the improvement of salt tolerance in brassicas is emphasized.
Keywords:genetic variation  oilseed crops  ion transport  organic osmotica  erucic acid  glucosinolates  salinity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号