首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant populations may show differentiation in phenotypic plasticity, and theory predicts that greater levels of environmental heterogeneity should select for higher magnitudes of phenotypic plasticity. We evaluated phenotypic responses to reduced soil moisture in plants of Convolvulus chilensis grown in a greenhouse from seeds collected in three natural populations that differ in environmental heterogeneity (precipitation regime). Among several morphological and ecophysiological traits evaluated, only four traits showed differentiation among populations in plasticity to soil moisture: leaf area, leaf shape, leaf area ratio (LAR), and foliar trichome density. In all of these traits plasticity to drought was greatest in plants from the population with the highest interannual variation in precipitation. We further tested the adaptive nature of these plastic responses by evaluating the relationship between phenotypic traits and total biomass, as a proxy for plant fitness, in the low water environment. Foliar trichome density appears to be the only trait that shows adaptive patterns of plasticity to drought. Plants from populations showing plasticity had higher trichome density when growing in soils with reduced moisture, and foliar trichome density was positively associated with total biomass. Co-ordinating editor: F. Stuefer  相似文献   

2.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

3.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

4.
5.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

6.
Phenotypic integration can be defined as the network of multivariate relationships among behavioural, physiological and morphological traits that describe the organism. Phenotypic integration plasticity refers to the change in patterns of phenotypic integration across environments or ontogeny. Because studies of phenotypic plasticity have predominantly focussed on single traits, a G × E interaction is typically perceived as differences in the magnitude of trait expression across two or more environments. However, many plastic responses involve coordinated responses in multiple traits, raising the possibility that relative differences in trait expression in different environments are an important, but often overlooked, source of G × E interaction. Here, we use phenotypic change vectors to statistically compare the multivariate life‐history plasticity of six Daphnia magna clones collected from four disparate European populations. Differences in the magnitude of plastic responses were statistically distinguishable for two of the six clones studied. However, differences in phenotypic integration plasticity were statistically distinguishable for all six of the clones studied, suggesting that phenotypic integration plasticity is an important component of G × E interactions that may be missed unless appropriate multivariate analyses are used.  相似文献   

7.
Quantifying patterns of variation and coordination of plant functional traits can help to understand the mechanisms underlying both invasiveness and adaptation of plants. Little is known about the coordinated variations of performance and functional traits of different organs in invasive plants, especially in response to their adaptation to environmental stressors. To identify the responses of the invasive species Solidago canadensis to drought, 180 individuals were randomly collected from 15 populations and 212 ramets were replanted in a greenhouse to investigate both the response and coordination between root and leaf functional traits. Drought significantly decreased plant growth and most of the root and leaf functional traits, that is, root length, surface area, volume and leaf size, number, and mass fraction, except for the root length ratio and root mass fraction. Phenotypic plasticity was higher in root traits than in leaf traits in response to drought, and populations did not differ significantly. The plasticity of most root functional traits, that is, root length (RL), root surface area (RSA), root volume (RV), and root mass fraction (RMF), were significantly positively correlated with biomass between control and drought. However, the opposite was found for leaf functional traits, that is, specific leaf area (SLA), leaf area ratio (LAR), and leaf mass fraction (LMF). Drought enhanced the relationship between root and leaf, that is, 26 pairwise root–leaf traits were significantly correlated under drought, while only 15 pairwise root–leaf traits were significantly correlated under control conditions. Significant correlations were found between biomass and all measured functional traits except for leaf size. RV, root length ratio, RMF, total area of leaves, and LMF responded differently to water availability. These responses enable S. canadensis to cope with drought conditions and may help to explain the reason of the vast ecological amplitude of this species.  相似文献   

8.
Phenotypic integration and developmental canalization have been hypothesized to constrain the degree of phenotypic plasticity, but little evidence exists, probably due to the lack of studies on the relationships among the three processes, especially for plants under different environments. We conducted a field experiment by subjecting plants of Abutilon theophrasti to three densities, under infertile and fertile soil conditions, and analyzing correlations among canalization, integration, and plasticity in a variety of measured morphological traits after 50 and 70 days, to investigate the relationships among the three variables in response to density and how these responses vary with soil conditions and growth stages. Results showed trait canalization decreased and phenotypic integration and the degree of plasticity (absolute plasticity) in traits increased with density. Phenotypic integration often positively correlated with absolute plasticity, whereas correlations between trait canalization and plasticity were insignificant in most cases, with a few positive ones between canalization and absolute plasticity at low and medium densities. As plants grew, these correlations intensified in infertile soil and attenuated in fertile soil. Our findings suggested the complexity of the relationship between canalization and plasticity: Decreased canalization is more likely to facilitate active plastic responses under more favorable conditions, whereas increased level of integration should mainly be an outcome of plastic responses. Soil conditions and growth stage may affect responses of these correlations to density via modifying plant size, competition strength, and plastic responses in traits. We also predicted that decreased canalization can be advantageous or disadvantageous, and the lack of response to stress may demonstrate a stronger ability of adaptation than passive response, thus should be adaptive plasticity as active response.  相似文献   

9.
Adaptation of natural populations to variable environmental conditions may occur by changes in trait means and/or in the levels of plasticity. Theory predicts that environmental heterogeneity favors plasticity of adaptive traits. Here we investigated the performance in several traits of three sympatric Drosophila species freshly collected in two environments that differ in the heterogeneity of environmental conditions. Differences in trait means within species were found in several traits, indicating that populations differed in their evolutionary response to the environmental conditions of their origin. Different species showed distinct adaptation with a very different role of plasticity across species for coping with environmental changes. However, geographically distinct populations of the same species generally displayed the same levels of plasticity as induced by fluctuating thermal regimes. This indicates a weak and trait‐specific effect of environmental heterogeneity on plasticity. Furthermore, similar levels of plasticity were found in a laboratory‐adapted population of Drosophila melanogaster with a common geographic origin but adapted to the laboratory conditions for more than 100 generations. Thus, this study does not confirm theoretical predictions on the degree of adaptive plasticity among populations in relation to environmental heterogeneity but shows a very distinct role of species‐specific plasticity.  相似文献   

10.
The impact of elevated carbon dioxide on plants is a growing concern in evolutionary ecology and global change biology. Characterizing patterns of phenotypic integration and multivariate plasticity to elevated carbon dioxide can provide insights into ecological and evolutionary dynamics in future human‐altered environments. Here, we examined univariate and multivariate responses to carbon enrichment in six functional traits among six European accessions of Arabidopsis thaliana. We detected phenotypic plasticity in both univariate and multivariate phenotypes, but did not find significant variation in plasticity (genotype by environment interactions) within or among accessions. Eigenvector, eigenvalue variance, and common principal components analyses showed that elevated carbon dioxide altered patterns of trait covariance, reduced the strength of phenotypic integration, and decreased population‐level differentiation in the multivariate phenotype. Our data suggest that future carbon dioxide conditions may influence evolutionary dynamics in natural populations of A. thaliana.  相似文献   

11.
The phenotypic plasticity of traits, defined as the ability of a genotype to express different phenotypic values of the trait across a range of environments, can vary between habitats depending on levels of temporal and spatial heterogeneity. Other traits can be insensitive to environmental perturbations and show environmental canalization. We tested levels of phenotypic plasticity in diverse Drosophila serrata populations along a latitudinal cline ranging from a temperate, variable climate to a tropical, stable climate by measuring developmental rate and size-related traits at three temperatures (16°C, 22°C, and 28°C). We then compared the slopes of the thermal reaction norms among populations. The 16–22°C part of the reaction norms for developmental rate was flatter (more canalized) for the temperate populations than for the tropical populations. However, slopes for the reaction norms of the two morphological traits (wing size, wing:thorax ratio), were steeper (more plastic) in the temperate versus the tropical populations over the entire thermal range. The different latitudinal patterns in plasticity for developmental rate and the morphological traits may reflect contrasting selection pressures along the tropical–temperate thermal gradient.  相似文献   

12.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

13.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

14.
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.  相似文献   

15.
Although theoretical models have identified environmental heterogeneity as a prerequisite for the evolution of adaptive plasticity, this relationship has not yet been demonstrated experimentally. Because of pool desiccation risk, adaptation of development rate is important for many amphibians. In a simulated pool-drying experiment, we compared the development time and phenotypic plasticity in development time of populations of the common frog Rana temporaria, originating from 14 neighbouring islands off the coast of northern Sweden. Drying regime of pools used by frogs for breeding differed within and among the islands. We found that the degree of phenotypic plasticity in development time was positively correlated with the spatial variation in the pool-drying regimes present on each island. In addition, local adaptation in development time to the mean drying rate of the pools on each island was found. Hence, our study demonstrates the connection between environmental heterogeneity and developmental plasticity at the island population level, and also highlights the importance of the interplay between local specialization and phenotypic plasticity depending on the local selection pressures.  相似文献   

16.
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

17.
王瑗  郁万文  周凯  汪贵斌  曹福亮 《广西植物》2019,39(9):1147-1158
该研究以自然分布的内蒙、宁夏、甘肃、新疆、陕西等23个不同地理来源(种源)的野生苦豆子种子及其播种于内蒙古鄂托克前旗同质园内的当年生植株为材料,采用方差分析、主成分分析、聚类分析等方法对种子长、宽、千粒重以及植株的叶长、叶宽、叶面积、叶形指数、苗高、地径及生物量等10个表型性状的多样性进行了研究。结果表明:各个表型性状种源间均呈极显著差异,其中种子表型性状的变异系数为5.24%,植株表型性状的变异系数为18.34%,表明种子性状的稳定性高于植株性状。同时,10个性状的表型分化系数均高于70%,说明苦豆子表型多样性主要来源于种源间的表型变异;各种源苦豆子种子性状的表型分化系数均值高达97.55%,且种长、千粒重分别与采集地经度、纬度和海拔等环境因子呈极显著相关性,说明种子表型性状受环境因素的影响较大;相关性分析显示,苦豆子植株性状叶长(LL)、叶面积(LA)分别与种子性状千粒重(TW)、种长(SL)和种宽(SW)有显著相关性,暗示表型性状中的可遗传变异影响;利用主成分和聚类分析对23个种源苦豆子进行综合评价,筛选出生物量较大、苗高较高、千粒重较重、叶面积较大等综合表现较好的6个种源,共分为两类,分别是DK、JY、WY、WH、ETK和YN,这为苦豆子种质资源定向开发以及选育和栽培提供了一定的理论支撑和基础材料。  相似文献   

18.
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable.  相似文献   

19.
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity.  相似文献   

20.
Phenotypic plasticity refers to the ability of an organism to alter its physiology/morphology/behavior in response to changes in environmental conditions. Although encompassing various phenomena spanning multi-ple levels of organization, most plastic responses seem to take place by altering gene expression and eventually altering ontogenetic trajectory in response to environmental variation. Epigenetic modifications provide a plausi-ble link between the environment and alterations in gene expression, and the alterations in phenotype based on environmentally induced epigenetic modifications can be inherited transgenerationally. Even closely related species and populations with different genotypes may exhibit differences in the patterns and the extents of plastic responses, indicating the wide existence of plasticity genes which are independent of trait means and directly respond to environmental stimuli by triggering phenotypic changes. The ability of plasticity is not only able to affect the adaptive evolution of species significantly, but is also an outcome of evolutionary processes. Therefore, phenotypic plasticity is a potentially important molder of adaptation and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号