首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels   总被引:2,自引:0,他引:2  
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.  相似文献   

2.
Intrinsic membrane proteins are solvated by a shell of lipid molecules interacting with the membrane-penetrating surface of the protein; these lipid molecules are referred to as annular lipids. Lipid molecules are also found bound between transmembrane α-helices; these are referred to as non-annular lipids. Annular lipid binding constants depend on fatty acyl chain length, but the dependence is less than expected from models based on distortion of the lipid bilayer alone. This suggests that hydrophobic matching between a membrane protein and the surrounding lipid bilayer involves some distortion of the transmembrane α-helical bundle found in most membrane proteins, explaining the importance of bilayer thickness for membrane protein function. Annular lipid binding constants also depend on the structure of the polar headgroup region of the lipid, and hotspots for binding anionic lipids have been detected on some membrane proteins; binding of anionic lipid molecules to these hotspots can be functionally important. Binding of anionic lipids to non-annular sites on membrane proteins such as the potassium channel KcsA can also be important for function. It is argued that the packing preferences of the membrane-spanning α-helices in a membrane protein result in a structure that matches nicely with that of the surrounding lipid bilayer, so that lipid and protein can meet without either having to change very much.  相似文献   

3.
RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2–4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg+2 concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg+2 than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel’s function.  相似文献   

4.
Scorpion depressant beta-toxins show high preference for insect voltage-gated sodium channels (Na(v)s) and modulate their activation. Although their pharmacological and physiological effects were described, their three-dimensional structure and bioactive surface have never been determined. We utilized an efficient system for expression of the depressant toxin LqhIT2 (from Leiurus quinquestriatushebraeus), mutagenized its entire exterior, and determined its X-ray structure at 1.2 A resolution. The toxin molecule is composed of a conserved cysteine-stabilized alpha/beta-core (core-globule), and perpendicular to it an entity constituted from the N and C-terminal regions (NC-globule). The surface topology and overall hydrophobicity of the groove between the core and NC-globules (N-groove) is important for toxin activity and plays a role in selectivity to insect Na(v)s. The N-groove is flanked by Glu24 and Tyr28, which belong to the "pharmacophore" of scorpion beta-toxins, and by the side-chains of Trp53 and Asn58 that are important for receptor site recognition. Substitution of Ala13 by Trp in the N-groove uncoupled activity from binding, suggesting that this region of the molecule is also involved in "voltage-sensor trapping", the mode of action that typifies scorpion beta-toxins. The involvement of the N-groove in recognition of the receptor site, which seems to require a defined topology, as well as in sensor trapping, which involves interaction with a moving channel region, is puzzling. On the basis of the mutagenesis studies we hypothesize that following binding to the receptor site, the toxin undergoes a conformational change at the N-groove region that facilitates the trapping of the voltage-sensor in its activated position.  相似文献   

5.
Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.  相似文献   

6.
The x-ray structure of the KcsA channel at different [K(+)] and [Rb(+)] provided insight into how K(+) channels might achieve high selectivity and high K(+) transit rates and showed marked differences between the occupancies of the two ions within the ion channel pore. In this study, the binding of kappa-conotoxin PVIIA (kappa-PVIIA) to Shaker K(+) channel in the presence of K(+) and Rb(+) was investigated. It is demonstrated that the complex results obtained were largely rationalized by differences in selectivity filter occupancy of this 6TM channels as predicted from the structural work on KcsA. kappa-PVIIA inhibition of the Shaker K(+) channel differs in the closed and open state. When K(+) is the only permeant ion, increasing extracellular [K(+)] decreases kappa-PVIIA affinity for closed channels by decreasing the "on" binding rate, but has no effect on the block of open channels, which is influenced only by the intracellular [K(+)]. In contrast, extracellular [Rb(+)] affects both closed- and open-channel binding. As extracellular [Rb(+)] increases, (a) binding to the closed channel is slightly destabilized and acquires faster kinetics, and (b) open channel block is also destabilized and the lowest block seems to occur when the pore is likely filled only by Rb(+). These results suggest that the nature of the permeant ions determines both the occupancy and the location of the pore site from which they interact with kappa-PVIIA binding. Thus, our results suggest that the permeant ion(s) within a channel pore can determine its functional and pharmacological properties.  相似文献   

7.
The role of arginines R64 and R89 at non-annular lipid binding sites of KcsA, on the modulation of channel activity by anionic lipids has been investigated. In wild-type (WT) KcsA reconstituted into asolectin lipid membranes, addition of phosphatidic acid (PA) drastically reduces inactivation in macroscopic current recordings. Consistent to this, PA increases current amplitude, mean open time and open probability at the single channel level. Moreover, kinetic analysis reveals that addition of PA causes longer open channel lifetimes and decreased closing rate constants. Effects akin to those of PA on WT-KcsA are observed when R64 and/or R89 are mutated to alanine, regardless of the added anionic lipids. We interpret these results as a consequence of interactions between the arginines and the anionic PA bound to the non-annular sites. NMR data shows indeed that at least R64 is involved in binding PA. Moreover, molecular dynamics (MD) simulations predict that R64, R89 and surrounding residues such as T61, mediate persistent binding of PA to the non-annular sites.Channel inactivation depends on interactions within the inactivation triad (E71-D80-W67) behind the selectivity filter. Therefore, it is expected that such interactions are affected when PA binds the arginines at the non-annular sites. In support of this, MD simulations reveal that PA binding prevents interaction between R89 and D80, which seems critical to the effectiveness of the inactivation triad. This mechanism depends on the stability of the bound lipid, favoring anionic headgroups such as that of PA, which thrive on the positive charge of the arginines.  相似文献   

8.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   

9.
Cyclic nucleotide-gated (CNG) ion channels mediate cellular responses to sensory stimuli. In vertebrate photoreceptors, CNG channels respond to the light-induced decrease in cGMP by closing an ion-conducting pore that is permeable to cations, including Ca(2+) ions. Rod CNG channels are directly inhibited by Ca(2+)-calmodulin (Ca(2+)/CaM), but the physiological role of this modulation is unknown. Native rod CNG channels comprise three CNGA1 subunits and one CNGB1 subunit. The single CNGB1 subunit confers several key properties on heteromeric channels, including Ca(2+)/CaM-dependent modulation. The molecular basis for Ca(2+)/CaM inhibition of rod CNG channels has been proposed to involve the binding of Ca(2+)/CaM to a site in the NH(2)-terminal region of the CNGB1 subunit, which disrupts an interaction between the NH(2)-terminal region of CNGB1 and the COOH-terminal region of CNGA1. Here, we test this mechanism for Ca(2+)/CaM-dependent inhibition of CNGA1/CNGB1 channels by simultaneously monitoring protein interactions with fluorescence spectroscopy and channel function with patch-clamp recording. Our results show that Ca(2+)/CaM binds directly to CNG channels, and that binding is the rate-limiting step for channel inhibition. Further, we show that the NH(2)- and COOH-terminal regions of CNGB1 and CNGA1 subunits, respectively, are in close proximity, and that Ca(2+)/CaM binding causes a relative rearrangement or separation of these regions. This motion occurs with the same time course as channel inhibition, consistent with the notion that rearrangement of the NH(2)- and COOH-terminal regions underlies Ca(2+)/CaM-dependent inhibition.  相似文献   

10.
Members of the hyperpolarization-activated cation (HCN) channel family generate HCN currents (I(h)) that are directly regulated by cAMP and contribute to pacemaking activity in heart and brain. The four different HCN isoforms show distinct biophysical properties. In cell-free patches from Xenopus oocytes, the steady-state activation curve of HCN2 channels is 20 mV more hyperpolarized compared with HCN1. Whereas the binding of cAMP to a COOH-terminal cyclic nucleotide binding domain (CNBD) markedly shifts the activation curve of HCN2 by 17 mV to more positive potentials, the response of HCN1 is much less pronounced (4 mV shift). A previous deletion mutant study suggested that the CNBD inhibits hyperpolarization-gating in the absence of cAMP; the binding of cAMP shifts gating to more positive voltages by relieving this inhibition. The differences in basal gating and cAMP responsiveness between HCN1 and HCN2 were proposed to result from a greater inhibitory effect of the CNBD in HCN2 compared with HCN1. Here, we use a series of chimeras between HCN1 and HCN2, in which we exchange the NH(2) terminus, the transmembrane domain, or distinct domains of the COOH terminus, to investigate further the molecular bases for the modulatory action of cAMP and for the differences in the functional properties of the two channels. Differences in cAMP regulation between HCN1 and HCN2 are localized to sequence differences within the COOH terminus of the two channels. Surprisingly, exchange of the CNBDs between HCN1 and HCN2 has little effect on basal gating and has only a modest one on cAMP modulation. Rather, differences in cAMP modulation depend on the interaction between the CNBD and the C-linker, a conserved 80-amino acid region that connects the last (S6) transmembrane segment to the CNBD. Differences in basal gating depend on both the core transmembrane domain and the COOH terminus. These data, taken in the context of the previous data on deletion mutants, suggest that the inhibitory effect of the CNBD on basal gating depends on its interactions with both the C-linker and core transmembrane domain of the channel. The extent to which cAMP binding is able to relieve this inhibition is dependent on the interaction between the C-linker and the CNBD.  相似文献   

11.
Spermidine and spermine, are endogenous polyamines (PAs) that regulate cell growth and modulate the activity of numerous ion channel proteins. In particular, intracellular PAs are potent blockers of many different cation channels and are responsible for strong suppression of outward K+ current, a phenomenon known as inward rectification characteristic of a major class of KIR K+ channels. We previously described block of heterologously expressed voltage-gated Na+ channels (NaV) of rat muscle by intracellular PAs and PAs have recently been found to modulate excitability of brain neocortical neurons by blocking neuronal NaV channels. In this study, we compared the sensitivity of four different cloned mammalian NaV isoforms to PAs to investigate whether PA block is a common feature of NaV channel pharmacology. We find that outward Na+ current of muscle (NaV1.4), heart (NaV1.5), and neuronal (NaV1.2, NaV1.7) NaV isoforms is blocked by PAs, suggesting that PA metabolism may be linked to modulation of action potential firing in numerous excitable tissues. Interestingly, the cardiac NaV1.5 channel is more sensitive to PA block than other isoforms. Our results also indicate that rapid binding of PAs to blocking sites in the NaV1.4 channel is restricted to access from the cytoplasmic side of the channel, but plasma membrane transport pathways for PA uptake may contribute to long-term NaV channel modulation. PAs may also play a role in drug interactions since spermine attenuates the use-dependent effect of the lidocaine, a typical local anesthetic and anti-arrhythmic drug.  相似文献   

12.
Pentameric ligand-gated ion channels (pLGICs) are crucial mediators of electrochemical signal transduction in various organisms from bacteria to humans. Lipids play an important role in regulating pLGIC function, yet the structural bases for specific pLGIC-lipid interactions remain poorly understood. The bacterial channel ELIC recapitulates several properties of eukaryotic pLGICs, including activation by the neurotransmitter GABA and binding and modulation by lipids, offering a simplified model system for structure–function relationship studies. In this study, functional effects of noncanonical amino acid substitution of a potential lipid-interacting residue (W206) at the top of the M1-helix, combined with detergent interactions observed in recent X-ray structures, are consistent with this region being the location of a lipid-binding site on the outward face of the ELIC transmembrane domain. Coarse-grained and atomistic molecular dynamics simulations revealed preferential binding of lipids containing a positive charge, particularly involving interactions with residue W206, consistent with cation-π binding. Polar contacts from other regions of the protein, particularly M3 residue Q264, further support lipid binding via headgroup ester linkages. Aromatic residues were identified at analogous sites in a handful of eukaryotic family members, including the human GABAA receptor ε subunit, suggesting conservation of relevant interactions in other evolutionary branches. Further mutagenesis experiments indicated that mutations at this site in ε-containing GABAA receptors can change the apparent affinity of the agonist response to GABA, suggesting a potential role of this site in channel gating. In conclusion, this work details type-specific lipid interactions, which adds to our growing understanding of how lipids modulate pLGICs.  相似文献   

13.
14.
Wheat seeds contain different lipid binding proteins that are low molecular mass, basic and cystine-rich proteins. Among them, the recently characterized puroindolines have been shown to inhibit the growth of fungi in vitro and to enhance the fungal resistance of plants. Experimental data, using lipid vesicles, suggest that this antimicrobial activity is related to interactions with cellular membranes, but the underlying mechanisms are still unknown. This paper shows that extracellular application of puroindolines on voltage-clamped Xenopus laevis oocytes induced membrane permeabilization. Electrophysiological experiments, on oocytes and artificial planar lipid bilayers, suggest the formation, modulated by voltage, of cation channels with the following selectivity: Cs(+) > K(+) > Na(+) > Li(+) > choline = TEA. Furthermore, this channel activity was prevented by addition of Ca(2+) ions in the medium. Puroindolines were also able to decrease the long-term oocyte viability in a voltage-dependent manner. Taken together, these results indicate that channel formation is one of the mechanisms by which puroindolines exert their antimicrobial activity. Modulation of channel formation by voltage, Ca(2+), and lipids could introduce some selectivity in the action of puroindolines on natural membranes.  相似文献   

15.

Background

Voltage-gated Na+ channels (Nav) are responsible for the initiation and conduction of neuronal and muscle action potentials. Nav gating can be altered by sialic acids attached to channel N-glycans, typically through isoform-specific electrostatic mechanisms.

Methods

Using two sets of Chinese Hamster Ovary cell lines with varying abilities to glycosylate glycoproteins, we show for the first time that sialic acids attached to O-glycans and N-glycans within the Nav1.4 D1S5–S6 linker modulate Nav gating.

Results

All measured steady-state and kinetic parameters were shifted to more depolarized potentials under conditions of essentially no sialylation. When sialylation of only N-glycans or of only O-glycans was prevented, the observed voltage-dependent parameter values were intermediate between those observed under full versus no sialylation. Immunoblot gel shift analyses support the biophysical data.

Conclusions

The data indicate that sialic acids attached to both N- and O-glycans residing within the Nav1.4 D1S5-S6 linker modulate channel gating through electrostatic mechanisms, with the relative contribution of sialic acids attached to N- versus O-glycans on channel gating being similar.

General significance

Protein N- and O-glycosylation can modulate ion channel gating simultaneously. These data also suggest that environmental, metabolic, and/or congenital changes in glycosylation that impact sugar substrate levels, could lead, potentially, to changes in Nav sialylation and gating that would modulate AP waveforms and conduction.  相似文献   

16.
Zuzana Tomaskova 《FEBS letters》2010,584(10):2085-2092
This minireview focuses on observation of the properties, functional significance, and modulation of single chloride channels in the mitochondrial inner membrane using two electrophysiological methods - the patch-clamp and bilayer lipid membrane methods. Measurements of parameters such as conductance, Cl/K+ selectivity, voltage or pH dependence as well as their modulation by endogenous and exogenous compounds using individual mitochondrial chloride channels result in an unexpectedly wide range of values. This paper discusses the origin of this wide variety of channel parameters and the possible involvement of these channels in mitochondrial membrane potential oscillations, apoptosis, carrier function, and mitochondrial fusion and fission.  相似文献   

17.
Guanylate cyclase-activating protein-2 (GCAP-2) is a retinal Ca2+ sensor protein. It is responsible for the regulation of both isoforms of the transmembrane photoreceptor guanylate cyclase, a key enzyme of vertebrate phototransduction. GCAP-2 is N-terminally myristoylated and full activation of its target proteins requires the presence of this lipid modification. The structural role of the myristoyl moiety in the interaction of GCAP-2 with the guanylate cyclases and the lipid membrane is currently not well understood. In the present work, we studied the binding of Ca2+-free myristoylated and non-myristoylated GCAP-2 to phospholipid vesicles consisting of dimyristoylphosphatidylcholine or of a lipid mixture resembling the physiological membrane composition by a biochemical binding assay and 2H solid-state NMR. The NMR results clearly demonstrate the full-length insertion of the aliphatic chain of the myristoyl group into the membrane. Very similar geometrical parameters were determined from the 2H NMR spectra of the myristoyl group of GCAP-2 and the acyl chains of the host membranes, respectively. The myristoyl chain shows a moderate mobility within the lipid environment, comparable to the acyl chains of the host membrane lipids. This is in marked contrast to the behavior of other lipid-modified model proteins. Strikingly, the contribution of the myristoyl group to the free energy of membrane binding of GCAP-2 is only on the order of − 0.5 kJ/mol, and the electrostatic contribution is slightly unfavorable, which implies that the main driving forces for membrane localization arises through other, mainly hydrophobic, protein side chain-lipid interactions. These results suggest a role of the myristoyl group in the direct interaction of GCAP-2 with its target proteins, the retinal guanylate cyclases.  相似文献   

18.
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b6f and bc1 complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b6f complex with those in bc1 shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b6f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc1 complex. The specific identity of lipids is different in b6f and bc1 complexes: b6f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc1 complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b6f, as well as eicosane in C. reinhardtii, are unique to the b6f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b6f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.  相似文献   

19.
The Grb2 adapter protein is involved in the activation of the Ras signaling pathway. It recruits the Sos protein by binding of its two SH3 domains to Sos polyproline sequences. We observed that the binding of Grb2 to a bivalent ligand, containing two Sos-derived polyproline-sequences immobilized on a SPR sensor, shows unusual kinetic behavior. SPR-kinetic analysis and supporting data from other techniques show major contributions of an intermolecular bivalent binding mode. Each of the two Grb2 SH3 domains binds to one polyproline-sequence of two different ligand molecules, facilitating binding of a second Grb2 molecule to the two remaining free polyproline binding sites. A molecular model based on the X-ray structure of the Grb2 dimer shows that Grb2 is flexible enough to allow this binding mode. The results fit with a role of Grb2 in protein aggregation, achieving specificity by multivalent interactions, despite the relatively low affinity of single SH3 interactions.  相似文献   

20.
The alpha subunit of voltage-gated Na(+) channels of brain, skeletal muscle, and cardiomyocytes is functionally modulated by the accessory beta(1), but not the beta(2) subunit. In the present study, we used beta(1)/beta(2) chimeras to identify molecular regions within the beta(1) subunit that are responsible for both the increase of the current density and the acceleration of recovery from inactivation of the human heart Na(+) channel (hH1). The channels were expressed in Xenopus oocytes. As a control, we coexpressed the beta(1)/beta(2) chimeras with rat brain IIA channels. In agreement with previous studies, the beta(1) extracellular domain sufficed to modulate IIA channel function. In contrast to this, the extracellular domain of the beta(1) subunit alone was ineffective to modulate hH1. Instead, the putative membrane anchor plus either the intracellular or the extracellular domain of the beta(1) subunit was required. An exchange of the beta(1) membrane anchor by the corresponding beta(2) subunit region almost completely abolished the effects of the beta(1) subunit on hH1, suggesting that the beta(1) membrane anchor plays a crucial role for the modulation of the cardiac Na(+) channel isoform. It is concluded that the beta(1) subunit modulates the cardiac and the neuronal channel isoforms by different molecular interactions: hH1 channels via the membrane anchor plus additional intracellular or extracellular regions, and IIA channels via the extracellular region only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号