首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this paper, we review analytical methods for a rigorous study of the existence and stability of stationary, multiple spots for reaction–diffusion systems. We will consider two classes of reaction–diffusion systems: activator–inhibitor systems (such as the Gierer–Meinhardt system) and activator–substrate systems (such as the Gray–Scott system or the Schnakenberg model). The main ideas are presented in the context of the Schnakenberg model, and these results are new to the literature. We will consider the systems in a two-dimensional, bounded and smooth domain for small diffusion constant of the activator. Existence of multi-spots is proved using tools from nonlinear functional analysis such as Liapunov–Schmidt reduction and fixed-point theorems. The amplitudes and positions of spots follow from this analysis. Stability is shown in two parts, for eigenvalues of order one and eigenvalues converging to zero, respectively. Eigenvalues of order one are studied by deriving their leading-order asymptotic behavior and reducing the eigenvalue problem to a nonlocal eigenvalue problem (NLEP). A study of the NLEP reveals a condition for the maximal number of stable spots. Eigenvalues converging to zero are investigated using a projection similar to Liapunov–Schmidt reduction and conditions on the positions for stable spots are derived. The Green’s function of the Laplacian plays a central role in the analysis. The results are interpreted in the biological, chemical and ecological contexts. They are confirmed by numerical simulations.   相似文献   

2.
Abstract: The expression of MARCKS, a major protein kinase C (PKC) substrate, was examined in the immortalized hippocampal cell line HN33, following differentiation using phorbol esters or retinoic acid. In cells exposed to phorbol esters, MARCKS protein levels were reduced through an apparent PKC-dependent mechanism. Exposure to 1 µ M phorbol 12-myristate 13-acetate (PMA) for 10 min resulted in a rapid loss of PKC activity in the soluble fraction with a concurrent increase in membrane-associated PKC activity. PKC activity was reduced to <20% of control values in both soluble and membrane fractions following 1 h of PMA exposure. Significant reductions in MARCKS protein levels were initially observed in membrane and soluble fractions following PMA exposure for 4 and 8 h, respectively. The reduction in MARCKS protein levels was maximal following 24 h of PMA exposure. MARCKS protein expression was also down-regulated in a dose-dependent manner on exposure of HN33 cells to retinoic acid. In cells exposed to 10 µ M retinoic acid, the MARCKS protein level was reduced in the membrane fraction within 4 h. Reduction of MARCKS protein levels was maximal (>90%) by 12 h with no evidence for any alteration in PKC activity. Reduced levels of MARCKS protein were also observed in the soluble fraction of retinoic acid-exposed cells, but to a significantly lesser extent. Addition of the PKC inhibitor GF109203X blocked the down-regulation of MARCKS protein in PMA-treated cultures but not in retinoic acid-treated cells. These findings suggest that the down-regulation of MARCKS may play an important role in both phorbol ester- and retinoic acid-induced differentiation in cells of neuronal origin.  相似文献   

3.
L A Allen  A Aderem 《The EMBO journal》1995,14(6):1109-1121
MARCKS is a protein kinase C (PKC) substrate that is phosphorylated during neurosecretion, phagocyte activation and growth factor-dependent mitogenesis. MARCKS binds calcium/calmodulin and crosslinks F-actin, and both these activities are regulated by PKC-dependent phosphorylation. We present evidence here that PKC-dependent phosphorylation also regulates the cycling of MARCKS between the plasma membrane and Lamp-1-positive lysosomes. Immuno-fluorescence and immunoelectron microscopy, and subcellular fractionation, demonstrated that MARCKS was predominantly associated with the plasma membrane of resting fibroblasts. Activation of PKC resulted in MARCKS phosphorylation and its displacement from the plasma membrane to Lamp-1-positive lysosomes. MARCKS phosphorylation is required for its translocation to lysosomes since mutating either the serine residues phosphorylated by PKC (phos-) or the PKC inhibitor staurosporine, prevented MARCKS phosphorylation, its release from the plasma membrane, and its subsequent association with lysosomes. In the presence of lysosomotropic agents or nocodazole, MARCKS accumulated on lysosomes and returned to the plasma membrane upon drug removal, further suggesting that the protein cycles between the plasma membrane and lysosomes. In contrast to wild-type MARCKS, the phos- mutant did not accumulate on lysosomes in cells treated with NH4Cl, suggesting that basal phosphorylation of MARCKS promotes its constitutive cycling between these two compartments.  相似文献   

4.
Protein kinase C (PKC) and the actin cytoskeleton are criticaleffectors of membrane trafficking in mammalian cells. In polarized epithelia, the role of these factors in endocytic events at either theapical or basolateral membrane is poorly defined. In the present study,phorbol 12-myristate 13-acetate (PMA) and other activators of PKCselectively enhanced basolateral but not apical fluid-phase endocytosisin human T84 intestinal epithelia. Stimulation of basolateralendocytosis was blocked by the conventional and novel PKC inhibitorGö-6850, but not the conventional PKC inhibitor Gö-6976,and correlated with translocation of the novel PKC isoform PKC-. PMAtreatment induced remodeling of basolateral F-actin. The actindisassembler cytochalasin D stimulated basolateral endocytosis andenhanced stimulation of endocytosis by PMA, whereas PMA-stimulated endocytosis was blocked by the F-actin stabilizers phalloidin andjasplakinolide. PMA induced membrane-to-cytosol redistribution of theF-actin cross-linking protein myristoylated alanine-rich C kinasesubstrate (MARCKS). Cytochalasin D also induced MARCKS translocationand enhanced PMA-stimulated translocation of MARCKS. A myristoylatedpeptide corresponding to the phosphorylation site domain of MARCKSinhibited both MARCKS translocation and PMA stimulation of endocytosis.MARCKS translocation was inhibited by Gö-6850 but notGö-6976. The results suggest that a novel PKC isoform, likelyPKC-, stimulates basolateral endocytosis in model epithelia by amechanism that involves F-actin and MARCKS.

  相似文献   

5.
We have previously shown that calpain promotes myoblast fusion by acting on protein kinase C-alpha and the cytosolic phosphorylated form of MARCKS. In other cell types, various isoforms of calpain, PKC alpha and MARCKS were found associated with caveolae. These vesicular invaginations of the plasma membrane are essential for myoblast fusion and differentiation. We have isolated caveolae from myoblasts and studied the presence of calpain isoforms and their possible effects on signalling mediated by caveolae-associated PKC. Our results show that milli-calpain co-localizes with myoblast caveolae. Futhermore we provide evidence, using a calcium ionophore and a specific inhibitor of calpains (calpastatin peptide), that milli-calpain reduces the PKC alpha and MARCKS content in these structures. Purified milli-calpain causes the appearance of the active catalytic fragment of PKC alpha (PKM), without having an effect on MARCKS. Addition of phorbol myristate acetate, an activator of PKC, induces tranlocation of PKC alpha towards caveolae and results in a significant reduction of MARCKS associated with caveolae. This phenomenon is not observed when a PKC alpha inhibitor is added at the same time. We conclude that the presence of biologically active milli-calpain within myoblast caveolae induces, in a PKC alpha-dependent manner, MARCKS translocation towards the cytosol. Such a localised signalling event may be essential for myoblast fusion and differentiation.  相似文献   

6.
MARCKS (myristoylated alanine-rich C-kinase substrate) is known to interact with calmodulin, actin filaments, and anionic phospholipids at a central basic domain which is also the site of phosphorylation by protein kinase C (PKC). In the present study, cytochalasin D (CD) and calmodulin antagonists were used to examine the influence of F-actin and calmodulin on membrane interaction of MARCKS in C6 glioma cells. CD treatment for 1 h disrupted F-actin filaments, increased membrane bound immunoreactive MARCKS (from 51% to 62% of total), yet markedly enhanced the amount of MARCKS translocated to the cytosolic fraction in response to the phorbol ester 4β-12-O-tetradecanoylphorbol 13-acetate. In contrast, CD treatment had no effect on phorbol ester-stimulated phosphorylation of MARCKS or on translocation of PKCα to the membrane fraction. Staurosporine also increased membrane association of MARCKS in a PKC-independent manner, as no change in MARCKS phosphorylation was noted and bis-indolylmaleimide (a more specific PKC inhibitor) did not alter MARCKS distribution. Staurosporine inhibited the phorbol ester-induced translocation of MARCKS but not of PKCα in both CD pretreated and untreated cells. Calmodulin antagonists (trifluoperazine, calmidazolium) had little effect on the cellular distribution or phosphorylation of MARCKS, but were synergistic with phorbol ester in translocating MARCKS from the membrane without a further increase in its phosphorylation. We conclude that cytoskeletal integrity is not required for phosphorylation and translocation of MARCKS in response to activated PKC, but that interaction with both F-actin and calmodulin might serve to independently modulate PKC-regulated localization and function of MARCKS at cellular membranes.  相似文献   

7.
Abstract: The aim of this study was to investigate the mechanism by which short-term pretreatment with the phorbol ester 12- O -tetradecanoylphorbol 13-acetate (TPA; 100 n M ) enhances noradrenaline (NA) release from the human neuroblastoma cell line SH-SY5Y. Subcellular fractionation and immunocytochemical studies demonstrated that an 8-min TPA treatment caused translocation of the α-subtype of protein kinase C (PKC) from the cytosol to the plasma membrane. In contrast, TPA altered the distribution of PKC-ε from cytosolic and membrane-associated to cytoskeleton- and membrane-associated TPA had no effect on the cytosolic location of PKC-ζ. Subcellular fractionation studies also showed that the myristoylated alanine-rich C-kinase substrate (MARCKS), a major neuronal PKC substrate that has been implicated in the mechanism of neurotransmitter release, translocated from membranes to cytosol in response to an 8-min TPA treatment. Under these conditions the level of phosphorylation of MARCKS increased threefold. The ability of TPA to enhance NA release and to cause the translocation and phosphorylation of MARCKS was inhibited by the PKC inhibitor Ro 31-8220 (10 µ M ). Selective down-regulation of PKC subtypes by prolonged exposure to phorbol 12,13-dibutyrate (100 n M ) attenuated the TPA-induced enhancement of NA release and the translocation of MARCKS over an interval similar to that of down-regulation of PKC-α (but not -ε or -ζ). Thus, we have demonstrated a strong correlation between the translocation of MARCKS and the enhancement of NA release from SH-SY5Y cells due to the TPA-induced activation of PKC-α.  相似文献   

8.
Protein kinase C (PKC) has been implicated in lipopolysaccharide (LPS)-induced endothelial cell (EC) monolayer permeability. Myristoylated alanine-rich C kinase substrate (MARCKS), as a specific PKC substrate, appears to mediate PKC signaling by PKC-dependent phosphorylation of MARCKS and subsequent modification of the association of MARCKS with filamentous actin and calmodulin (CaM). Therefore, in the present study, we investigated LPS-induced MARCKS phosphorylation in bovine pulmonary artery EC (BPAEC). LPS potentiated MARCKS phosphorylation in BPAEC in a time- and dose-dependent manner. The PKC inhibitor, calphostin C, significantly decreased LPS-induced phosphorylation of MARCKS. In addition, downregulation of PKC with phorbol 12-myristate 13-acetate (PMA) did not affect the LPS-induced MARCKS phosphorylation, suggesting that LPS and PMA activate different isoforms of PKC. Pretreatment with SB203580, a specific inhibitor of p38 MAP kinase, or genistein, a tyrosine kinase inhibitor, prevented LPS-induced MARCKS phosphorylation. Phosphorylation at appropriate sites will induce translocation of MARCKS from the cell membrane to the cytosol. However, LPS, in contrast to PMA, did not generate MARCKS translocation in BPAEC, suggesting that MARCKS translocation may not play a role in LPS-induced actin rearrangement and EC permeability. LPS also enhanced both thrombin- and PMA-induced phosphorylation of MARCKS, suggesting that LPS was able to prime these signaling pathways in BPAEC. Because the CaM-dependent phosphorylation of myosin light chains (MLC) results in EC contraction, we studied the effect of LPS on MLC phosphorylation in BPAEC. LPS induced diphosphorylation of MLC in a time-dependent manner, which occurred at lower doses of LPS, than those required to induce MARCKS phosphorylation. In addition, there was no synergism between LPS and thrombin in the induction of MLC phosphorylation. These data indicate that MLC phosphorylation is independent of MARCKS phosphorylation. In conclusion, LPS stimulated MARCKS phosphorylation in BPAEC. This phosphorylation appears to involve activation of PKC, p38 MAP kinase, and tyrosine kinases. Further studies are needed to explore the role of MARCKS phosphorylation in LPS-induced actin rearrangement and EC permeability.  相似文献   

9.
Calabrese B  Halpain S 《Neuron》2005,48(1):77-90
Spine morphology is regulated by intracellular signals, like PKC, that affect cytoskeletal and membrane dynamics. We investigated the role of MARCKS (myristoylated, alanine-rich C-kinase substrate) in dendrites of 3-week-old hippocampal cultures. MARCKS associates with membranes via the combined action of myristoylation and a polybasic effector domain, which binds phospholipids and/or F-actin, unless phosphorylated by PKC. Knockdown of endogenous MARCKS using RNAi reduced spine density and size. PKC activation induced similar effects, which were prevented by expression of a nonphosphorylatable mutant. Moreover, expression of pseudophosphorylated MARCKS was, by itself, sufficient to induce spine loss and shrinkage, accompanied by reduced F-actin content. Nonphosphorylatable MARCKS caused spine elongation and increased the mobility of spine actin clusters. Surprisingly, it also decreased spine density via a novel mechanism of spine fusion, an effect that required the myristoylation sequence. Thus, MARCKS is a key factor in the maintenance of dendritic spines and contributes to PKC-dependent morphological plasticity.  相似文献   

10.
Phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) by protein kinase Cα (PKCα) is known to trigger its release from the plasma membrane/cytoskeleton into the cytoplasm, thereby promoting actin reorganization during migration. This study shows that once released into the cytoplasm, phosphoMARCKS directly promotes motility of melanoma cells. Aggressively motile B16 F10 mouse melanoma cells express high levels of phosphoMARCKS, whereas in weakly motile B16 F1 cells it is undetectable. Following treatment with okadaic acid (OA) (a protein phosphatase inhibitor), F1 cells exhibited a dramatic increase in phosphoMARCKS that was co-incident with a 5-fold increase in motility. Both MARCKS phosphorylation and motility were substantially decreased when prior to OA addition, MARCKS expression was knocked out by a MARCKS-specific shRNA, thereby implicating MARCKS as a major component of the motility pathway. Decreased motility and phosphoMARCKS levels in OA-treated cells were observed with a PKC inhibitor (calphostin C), thus indicating that PKC actively phosphorylates MARCKS in F1 cells but that this reaction is efficiently reversed by protein phosphatases. The mechanistic significance of phosphoMARCKS to motility was further established with a pseudo-phosphorylated mutant of MARCKS-GFP in which Asp residues replaced Ser residues known to be phosphorylated by PKCα. This mutant localized to the cytoplasm and engendered three-fold higher motility in F1 cells. Expression of an unmyristoylated, phosphorylation-resistant MARCKS mutant that localized to the cytoplasm, blocked motility by 40–50% of both OA-stimulated F1 cells and intrinsically motile F10 cells. These results demonstrate that phosphoMARCKS contributes to the metastatic potential of melanoma cells, and reveal a previously undocumented signaling role for this cytoplasmic phospho-protein.  相似文献   

11.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate that is targeted to the plasma membrane by an amino-terminal myristoyl group. In its nonphosphorylated form, MARCKS cross-links F-actin and binds calmodulin (CaM) reciprocally. However, upon phosphorylation by PKC, MARCKS releases the actin or CaM. MARCKS may therefore act as a CaM sink in resting cells and regulate CaM availability during cell activation. We have demonstrated previously that thrombin-induced myosin light chain (MLC) phosphorylation and increased monolayer permeability in bovine pulmonary artery endothelial cells (BPAEC) require both PKC- and CaM-dependent pathways. We therefore decided to investigate the phosphorylation of MARCKS in BPAEC to ascertain whether this occurs in a temporally relevant manner to participate in the thrombin-induced events. MARCKS is phosphorylated in response to thrombin with a time course similar to that seen with MLC. As expected, MARCKS is also phosphorylated by phorbol 12-myristate 13 acetate (PMA), a PKC activator, but with a slower onset and more prolonged duration. Bradykinin also enhances MARCKS phosphorylation in BPAEC, but histamine does not. MARCKS is distributed evenly between the membrane and cytosol in BPAEC, and neither thrombin nor PMA caused significant translocation of the protein. Specific PKC inhibitors attenuated MARCKS phosphorylation by either thrombin or PMA. Since thrombin-induced MLC phosphorylation is also attenuated by these inhibitors, MARCKS may be involved in MLC kinase activation and subsequent BPAEC contraction. W7, a CaM antagonist, enhances the phosphorylation of MARCKS. This was expected since CaM binding to MARCKS has been shown to decrease MARCKS phosphorylation by PKC. On the other hand, tyrosine kinase inhibitors, genistein and tyrphostin, attenuate MARCKS phosphorylation but have no effect on MLC phosphorylation, suggesting that MARCKS may be phosphorylated by kinases other than PKC. Phosphorylation of MARCKS outside the PKC phosphorylation domain would not be expected to induce the release of CaM. These data provide support for the hypothesis that MARCKS may serve as a regulator of CaM availability in BPAEC. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Dynamic changes in intracellular free Ca(2+) concentrations ([Ca(2+)](i)s) control many important cellular events, including binding of Ca(2+)-calmodulin (Ca(2+)-CaM) and phosphorylation by protein kinase C (PKC). The two signals compete for the same domains in certain substrates, such as myristoylated alanine-rich PKC-substrate (MARCKS). To observe the convergence and relative time of arrival of CaM and PKC signals at their shared domain of MARCKS, we need to image cells that are loaded with more than two fluorescent dyes at a reasonable speed. We have developed a simple and powerful multicolor imaging system using conventional fluorescence microscopy. The epifluorescence configuration uses a glass reflector and rotating filter wheels for excitation and emission paths. As it is free of dichroic (multichroic) mirrors, multiple fluorescence images can be acquired rapidly regardless of the colors of fluorophores. We visualized Ca(2+)-CaM and PKC together with the dynamics of their common target, MARCKS, in single live cells. Receptor-activation resulted in translocation of MARCKS from the plasma membrane to cytosol through its phosphorylation by PKC. By observing fluorescence resonance energy transfer, we also obtained direct evidence that Ca(2+)-CaM binds MARCKS to drag it away from the membrane in circumstances when Ca(2+)-mobilization predominates over PKC activation.  相似文献   

13.
It is well recognized that phorbol 12,13-dibutyrate (PDBu)-activated PKC directly phosphorylates myristoylated alanine-rich C kinase substrate (MARCKS), whose phosphorylation is used as a marker of PKC activation. However, in SH-SY5Y neuroblastoma cells, Western blotting analyses revealed that Rho-associated coiled-coil kinase (ROCK)-specific inhibitor H-1152 inhibited PDBu-induced phosphorylation, and that a small G-protein inhibitor, toxin B, also inhibited MARCKS phosphorylation. Furthermore, in GST pull-down assays, PDBu induced RhoA activation in SH-SY5Y cells, and this activation was inhibited by PKC inhibitor Ro-31-8220. Finally, we showed that the transfection of a dominant negative form of RhoA inhibited PDBu-induced MARCKS phosphorylation in immunocytochemistries. These findings suggest that some PDBu-induced MARCKS phosphorylation includes the RhoA/ROCK pathway in SH-SY5Y cells.  相似文献   

14.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

15.
Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.  相似文献   

16.
MARCKS (Myristoylated Alanine Rich C Kinase Substrate) is a protein known to cross-link actin filament and consequently, is very important in the stabilization of the cytoskeletal structure. In addition, it has been recently demonstrated that the phosphorylation rate of this protein changes during myogenesis and that this protein is implicated in fusion events. For a better understanding of the biological function of MARCKS during myogenesis, we have undertaken to identify and purify this protein from rabbit skeletal muscle. Three chromatographic steps including an affinity calmodulin-agarose column were performed. The existence of a complex between the two proteins was confirmed by non-denaturing gel electrophoresis and immunoprecipitation. Two complexes were isolated which present an apparent molecular weight of about 600 kDa. Such interactions suggest that MARCKS is either a very good PKCalpha substrate and/or a regulator of PKC activity. These results are supported by previous studies showing preferential interactions and co-localization of PKC isozyme and MARCKS at focal adhesion sites. This is the first time that MARCKS has been purified from skeletal muscle and our data are consistent with a major role of this actin- and calmodulin-binding protein in cytoskeletal rearrangement or other functions mediated by PKalpha. Our results provide evidence for a tight and specific association of MARCKS and PKCalpha (a major conventional PKC isozyme in skeletal muscle) as indicated by the co-purification of the two proteins.  相似文献   

17.
Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.  相似文献   

18.
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.  相似文献   

19.
Trichome patterning in Arabidopsis serves as a model system to study how single cells are selected within a field of initially equivalent cells. Current models explain this pattern by an activator–inhibitor feedback loop. Here, we report that also a newly discovered mechanism is involved by which patterning is governed by the removal of the trichome-promoting factor TRANSPARENT TESTA GLABRA1 (TTG1) from non-trichome cells. We demonstrate by clonal analysis and misexpression studies that Arabidopsis TTG1 can act non-cell-autonomously and by microinjection experiments that TTG1 protein moves between cells. While TTG1 is expressed ubiquitously, TTG1–YFP protein accumulates in trichomes and is depleted in the surrounding cells. TTG1–YFP depletion depends on GLABRA3 (GL3), suggesting that the depletion is governed by a trapping mechanism. To study the potential of the observed trapping/depletion mechanism, we formulated a mathematical model enabling us to evaluate the relevance of each parameter and to identify parameters explaining the paradoxical genetic finding that strong ttg1 alleles are glabrous, while weak alleles exhibit trichome clusters.  相似文献   

20.
We investigate a reaction–diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction–diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction–diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号