首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Surface plasmon resonance imaging (SPRi) is most frequently used for the label-free measurement of biomolecular interactions. Here we explore the potential of SPRi to measure antibody production of individual hybridoma cells. As a model system, cells from a hybridoma, producing monoclonal antibodies recognizing epithelial cell adhesion molecule (EpCAM), were used. Recombinant human EpCAM protein was immobilized on an SPR sensor and hybridoma cells were introduced into an IBIS MX96 SPR imager and the SPRi response was followed for 10 h. SPRi responses were detected on the spots of the sensor only where ligands of the produced antibody were present. By measuring the SPRi signals on individual cells the antibody production of the individual cells was measured and production rates were calculated. For 53 single EpCAM hybridoma cells the production ranged from 0.16 to 11.95 pg (mean 2.96 pg per cell, SD 2.51) over a period of 10 h. Antibody excretion per cell per hour ranged from 0.02 to 1.19 pg (mean 0.30, SD 0.25). Here we demonstrate for the first time that antibody production of individual cells can be measured and quantified by SPRi, opening a new avenue for measuring excretion products of individual cells.  相似文献   

2.
Increased hepatocyte growth factor receptor (HGFR) signaling correlates closely with neoplastic invasion and metastatic potential of many human cancers. Hepatocyte growth factor receptor signaling is initiated by binding the physiological ligand HGF or the internalin B (InlB) protein of Listeria monocytogenes. Subsequent degradation of endocytosed HGFR terminates receptor signaling. Previously reported discrepancies in InlB and HGF-induced HGFR signaling could reflect differences in receptor internalization and degradation in response to these distinct ligands. We report that soluble InlB and HGF are mechanistically equivalent in triggering clathrin-dependent endocytosis and lysosomal degradation of HGFR. After internalization, InlB and HGF colocalize with Rab5, EEA1 and the transferrin receptor in classical early endosomes. Hepatocyte growth factor receptor internalization was prevented by overexpression of dominant negative mutants of dynamin 1 and epidermal growth factor phosphorylation substrate 15, but not caveolin 1, the GTPase Arf6 or the cholesterol-chelating drug Nystatin. Thus, HGFR internalization is principally clathrin-mediated and is not regulated by clathrin- independent pathways. Phosphatidylinositol 3-kinase signaling and HGF-regulated tyrosine kinase substrate were not required for ligand-triggered internalization of HGFR but were essential for subsequent lysosomal degradation. Thus, soluble InlB and HGF induce HGFR endocytosis and degradation by indistinguishable mechanisms, suggesting that InlB may be exploited to regulate pathogenic HGFR signaling.  相似文献   

3.
Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters (“cardiogenic clusters”) that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.  相似文献   

4.
Monolayer culture expansion remains as a fundamental step to acquire sufficient number of cells for 3D constructs formation. It has been well-documented that cell expansion is however accompanied by cellular dedifferentiation. In order to promote cell growth and circumvent cellular dedifferentiation, we evaluated the effects of Transforming Growth Factor Beta-2 (TGF-β2), Insulin-like Growth Factor-I (IGF-I) and basic Fibroblast Growth Factor (bFGF) combination on articular chondrocytes culture and ‘chondrocytes-fibrin’ construct formation. Chondrocytes were serially cultured in: (1) F12:DMEM + 10% Foetal Bovine Serum (FBS) with growth factors (FD10GFs), (2) F12:DMEM + 2%FBS with the growth factors (FD2GFs) and, (3) F12:DMEM + 10%FBS without growth factors (FD) as control. Cultured chondrocytes were evaluated by means of growth kinetics parameters, cell cycle analysis, quantitative phenotypic expression of collagen type II, aggrecan core protein sox-9 and collagen type I and, immunochemistry technique. Harvested chondrocytes were incorporated with plasma-derived fibrin and were polymerized to form the 3D constructs and implanted subcutaneously at the dorsum of athymic nude mice for eight (8) weeks. Resulted constructs were assigned for gross inspections and microscopic evaluation using standard histochemicals staining, immunochemistry technique and, quantitative phenotypic expression of cartilage markers to reassure cartilaginous tissue formation. Growth kinetics performance of chondrocytes cultured in three (3) types of culture media from the most to least was in the following order: FD10GFs > FD2GFs > FD. Following growth kinetics analysis, we decided to use FD10GFs and FD (control) for further evaluation and ‘chondrocytes-fibrin’ constructs formation. Chondrocytes cultured in FD10GFs preserved the normal diploid state (2c) with no evidence of aneuploidy, haploidy or tetraploidy. Expression of cartilage-specific markers namely collagen type II, aggrecan core protein and sox-9 were significantly higher in FD10GFs when compared to control. After implantation, ‘chondrocytes-fibrin’ constructs exhibited firm, white, smooth and glistening cartilage-like properties. FD10GFs constructs formed better quality cartilage-like tissue than FD constructs in term of overall cartilaginous tissue formation, cells organization and extracellular matrix distribution in the specimens. Cartilaginous tissue formation was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan was confirmed by positive Safranin O staining. Collagen type II exhibited immunopositivity at the pericellular and inter-territorial matrix area. Chondrogenic properties of the construct were further confirmed by the expression of genes encoding collagen type II, aggrecan core protein and sox9. In conclusion, FD10GFs promotes the proliferation of chondrocytes and formation of good quality ‘chondrocytes-fibrin’ constructs which may have potential use of matrix-induced cell implantation.  相似文献   

5.
Transforming growth factor beta (TGF-) binds specifically and with high affinity to several different cell surface proteins. Low Mr proteins of 50,000 and 80,000 have been termed type I and type II receptors. Intermediate sized binding components of 115,000–140,000 Mr and a high binding components of approximately 250,000 Mr in subunit size have been termed type III receptors. The high Mr component is a proteoglycan containing the glycosaminoglycan chains of heparan sulfate and chondroitin sulfate and the intermediate sized components are its core proteins. Although almost all cells have TGF- receptors, binding of TGF- to the type III binding components is restricted to cells of fibroblastic, osteoblastic and chondroblastic origin. The physiological relevance of each individual binding class is unclear. However, recent data indicate that the type III protein does not transmit signals to inhibit cell proliferation, induce protein synthesis, or promote cytomorphological change and that these activities may be mediated through the type I receptor. The mechanism of signal transduction remains unknown, but it does not appear to be associated with tyrosine phosphorylation or phosphorylation of the 40s ribosomal protein S6.Abbreviations TGF Transforming Growth Factor - GAG Glycosaminoglycan - EGF Epidermal Growth Factor  相似文献   

6.
In vitro differentiation of human mesenchymal stem cells to epithelial lineage   总被引:12,自引:0,他引:12  
Our study examined whether human bone marrow-derived MSCs are able to differentiate, in vitro, into functional epithelial-like cells. MSCs were isolated from the sternum of 8 patients with different hematological disorders. The surface phenotype of these cells was characterized.To induce epithelial differentiation, MSCs were cultured using Epidermal Growth Factor, Keratinocyte Growth Factor, Hepatocyte Growth Factor and Insulin-like growth Factor-II. Differentiated cells were further characterized both morphologically and functionally by their capacity to express markers with specificity for epithelial lineage. The expression of cytokeratin 19 was assessed by immunocytochemistry, and cytokeratin 18 was evaluated by quantitative RT-PCR (Taq-man). The data demonstrate that human MSCs isolated from human bone marrow can differentiate into epithelial-like cells and may thus serve as a cell source for tissue engineering and cell therapy of epithelial tissue.  相似文献   

7.
Scatter Factor (SF) is a fibroblast-secreted protein which promotes motility and matrix invasion of epithelial cells. Hepatocyte Growth Factor (HGF) is a powerful mitogen for hepatocytes and other epithelial tissues. SF and HGF, purified according to their respective biological activities, were interchangeable and equally effective in assays for cell growth, motility and invasion. Both bound with identical affinities to the same sites in target cells. The receptor for SF and HGF was identified as the product of the MET oncogene by: (i) ligand binding and coprecipitation in immunocomplexes; (ii) chemical crosslinking to the Met beta subunit; (iii) transfer of binding activity in insect cells by a baculovirus carrying the MET cDNA; (iv) ligand-induced tyrosine phosphorylation of the Met beta subunit. SF and HGF cDNA clones from human fibroblasts, placenta and liver had virtually identical sequences. We conclude that the same molecule (SF/HGF) acts as a growth or motility factor through a single receptor in different target cells.  相似文献   

8.
Semaphorins are cell surface and soluble signals that control axonal guidance. Recently, semaphorin receptors (plexins) have been discovered and shown to be widely expressed. Their biological activities outside the nervous system and the signal transduction mechanism(s) they utilize are largely unknown. Here, we show that in epithelial cells, Semaphorin 4D (Sema 4D) triggers invasive growth, a complex programme that includes cell#150;cell dissociation, anchorage-independent growth and branching morphogenesis. Interestingly, the same response is also controlled by scatter factors through their tyrosine kinase receptors, which share striking structural homology with plexins in their extracellular domain. We found that in cells expressing the endogenous proteins, Plexin B1 (the Sema 4D Receptor) and Met (the Scatter Factor 1/ Hepatocyte Growth Factor Receptor) associate in a complex. In addition, binding of Sema 4D to Plexin B1 stimulates the tyrosine kinase activity of Met, resulting in tyrosine phosphorylation of both receptors. Finally, cells lacking Met expression do not respond to Sema 4D unless exogenous Met is expressed. This work identifies a novel biological function of semaphorins and suggests the involvement of an unexpected signalling mechanism, namely, the coupling of a plexin to a tyrosine kinase receptor.  相似文献   

9.
The Scatter Factors are two homologous proteins, named Scatter Factor/Hepatocyte Growth Factor and Macrophage Stimulating Protein. Their receptors are the products of two oncogenes, Met and Ron, respectively. The Scatter Factors induce movement, stimulate proliferation, regulate apoptosis and are morphogenic, i.e. operate an integrated program that seems tailored to drive organ development and to regenerate injured tissues. On the other hand, Scatter Factors may be responsible for pathologic tissue remodeling, infiltration of inflammatory cells, and tumor growth and diffusion. The review describes the involvement of Scatter Factors in renal disease, including acute renal failure, glomerulonephritis, chronic fibrosing nephropathies, dialysis, renal transplantation and renal tumors, and discusses the double-faced role of Scatter Factors, that play either a protective or a pathogenic role.  相似文献   

10.
Gaining insights into the dynamic processes of molecular interactions that mediate cell-substrate and cell-cell adhesion is of great significance in the understanding of numerous physiological processes driven by intercellular communication. Here, an acoustic-wave biosensor is used to study and characterize specific interactions between cell-bound membrane proteins and surface-immobilized ligands, using as a model system the binding of major histocompatibility complex class I HLA-A2 proteins to anti-HLA-A2 monoclonal antibodies. The energy of the acoustic signal, measured as amplitude change, was found to depend directly on the number of HLA-A2/antibody complexes formed on the device surface. Real-time acoustic data were used to monitor the surface binding of cell suspensions at a range of 6.0 × 104 to 6.0 × 105 cells mL−1. Membrane interactions are governed by two-dimensional chemistry because of the molecules’ confinement to the lipid bilayer. The two-dimensional kinetics and affinity constant of the HLA-A2/antibody interaction were calculated (ka = 1.15 × 10−5 μm2 s−1 per molecule, kd = 2.07 × 10−5 s−1, and KA = 0.556 μm2 per molecule, at 25°C), based on a detailed acoustic data analysis. Results indicate that acoustic biosensors can emerge as a significant tool for probing and characterizing cell-membrane interactions in the immune system, and for fast and label-free screening of membrane molecules using whole cells.  相似文献   

11.
Most growth active hormones and peptides are mitogenic only in the presence of other growth factors [e.g., Platelet Derived Growth Factor (PDGF) and Epidermal Growth Factor (EGF) in "competence-progression" fibroblast model]. We have previously described that EGF alone is able to induce the signals which appear necessary for the mitogenic stimulation of EL2 rat embryo fibroblast line. Recently, we have demonstrated that Transforming Growth Factor beta (TGF beta) slightly stimulates the mitogenic response in EL2 cells. Here, we show that in EGF-treated EL2 cells the induction of at least four inducible-secreted proteins (ISPs, range from 29,000 to 68,000 Mr) is accompanied by a marked increase in DNA synthesis. In contrast, TGF beta or different concentrations of EGF induce a slow increase of the ISPs proportional to slow induction in DNA synthesis. Our results suggest that the mitogenic response in EL2 cell line may be connected with the qualitative and quantitative induction of these secreted proteins.  相似文献   

12.
The use of cell culture models is a principal and fundamental technology used in understanding how mammalian cells work. However, for some cell types such as mammary epithelia, the lines selected for extended culture are often transformed or have chromosomal abnormalities, while primary cultures have such a curtailed lifespan that their use is restricted. For example, mammary luminal epithelial cells (MECs) are used to study mechanisms of breast cancer, but the proliferation of primary cell cultures is highly limited. Here we describe the establishment of a new culture system to allow extended analysis of cultures of primary mouse MECs. In 2D monolayer culture, primary MECs showed a burst of proliferation 2-3 days post isolation, after which cell cycle decreased substantially. Addition of mammary epithelial growth factors, such as Epidermal Growth Factor, Fibroblast Growth Factor-2, Hepatocyte Growth Factor, and Receptor Activator for Nuclear Factor κB Ligand, or extracellular matrix proteins did not maintain their proliferation potential, neither did replating the cells to increase the mitogenic response. However, culturing MECs directly after tissue extraction in a 3D microenvironment consisting of basement membrane proteins, extended the time in culture in which the cells could proliferate. Our data reveal that the cellular microenvironment has profound effects on the proliferative properties of the mammary epithelia and is dominant over growth factors. Moreover, manipulating the cellular environment using this novel method can maintain the proliferative potential of primary MECs, thus enabling cell cycle to be studied as an endpoint after gene transfer or gene deletion experiments.  相似文献   

13.
Halogenobenzoates and 5-halogenouracils are commonly applied in industrial and medical fields. From this point of view, it is very important to study the effect of halogens and metal on the above mentioned biologically important ligands. This paper reviews the results of many years’ studies on the influence of halogens (in the series: F → Cl → Br → I) on the electronic system of benzoic acid and uracil. Moreover, the effect of metals (in the series: Mg → Ca → Sr → Ba ; Li → Na → K; in the long series of lanthanide elements: La(III) → Lu(III) except Pm) on the electronic charge distribution in halogenobenzoates is discussed. Systematic changes in the spectra of studied compounds were found. It allowed us to say that ionic potential and electronegativity of elements are the main parameters deciding on the electronic charge distribution in the molecule. Different complementary spectroscopic and quantum-chemical methods were applied in the study.  相似文献   

14.
Mueller TD  Nickel J 《FEBS letters》2012,586(14):1846-1859
Bone Morphogenetic Proteins (BMPs), together with Transforming Growth Factor (TGF)-β and Activins/Inhibins constitute the TGF-β superfamily of ligands. This superfamily is formed by more than 30 structurally related secreted proteins. Since TGF-β members act as morphogens, either a strict relation between a particular ligand to a distinct cellular receptor and/or temporospatial expression patterns of ligands and receptors is expected. Instead, only a limited number of receptors exist implicating promiscuous interactions of ligands and receptors. Furthermore, in complex tissues a multitude of different ligands can be found, which signal via overlapping subsets of receptors. This raises the intriguing question how concerted interactions of different ligands and receptors generate highly specific cellular signals, which are required during development and tissue homeostasis.  相似文献   

15.
Proteins of the Hedgehog, Wnt and Epidermal Growth Factor Receptor (EGFR) ligand families are secreted signals that induce concentration-dependent responses in surrounding cells. Although these proteins must diffuse through the aqueous extracellular environment, recent work has shown that hydrophobic lipid modifications are essential for their functions. All three classes of ligands are palmitoylated in the secretory pathway by related enzymes, and Hedgehog also carries a C-terminal cholesterol modification as a result of its autocatalytic cleavage. Palmitoylation is required for Wingless secretion and contributes to the signaling activity of Hedgehog and Wnt3a, but is not required for secretion or receptor activation by the EGFR ligand Spitz. While lipid modifications enhance the long-range activity of Sonic hedgehog, they restrict the range and increase the local concentration of Spitz. We discuss the diverse functions and the possible extent of palmitoylation of secreted ligands.  相似文献   

16.
P-glycoprotein (Pgp; also known as MDR1, ABCB1) is the most important and best studied efflux transporter at the blood-brain barrier (BBB); however, the organization of Pgp is unknown. The aim of this study was to employ the recently developed super-resolution fluorescence microscopy method spectral precision distance microscopy/spectral position determination microscopy (SPDM) to investigate the spatial distribution of Pgp in the luminal plasma membrane of brain capillary endothelial cells. Potential disturbing effects of cell membrane curvatures on the distribution analysis are addressed with computer simulations. Immortalized human cerebral microvascular endothelial cells (hCMEC/D3) served as a model of human BBB. hCMEC/D3 cells were transduced with a Pgp-green fluorescent protein (GFP) fusion protein incorporated in a lentivirus-derived vector. The expression and localization of the Pgp-GFP fusion protein was visualized by SPDM. The limited resolution of SPDM in the z-direction leads to a projection during the imaging process affecting the appeared spatial distribution of fluorescence molecules in the super-resolution images. Therefore, simulations of molecule distributions on differently curved cell membranes were performed and their projected spatial distribution was investigated. Function of the fusion protein was confirmed by FACS analysis after incubation of cells with the fluorescent probe eFluxx-ID Gold in absence and presence of verapamil. More than 112,000 single Pgp-GFP molecules (corresponding to approximately 5,600 Pgp-GFP molecules per cell) were detected by SPDM with an averaged spatial resolution of approximately 40 nm in hCMEC/D3 cells. We found that Pgp-GFP is distributed in clustered formations in hCMEC/D3 cells while the influence of present random cell membrane curvatures can be excluded based on the simulation results. Individual formations are distributed randomly over the cell membrane.  相似文献   

17.
Localization microscopy approaches allowing an optical resolution down to the single-molecule level in fluorescence-labeled biostructures have already found a variety of applications in cell biology, as well as in virology. Here, we focus on some perspectives of a special localization microscopy embodiment, spectral precision distance/position determination microscopy (SPDM). SPDM permits the use of conventional fluorophores or fluorescent proteins together with standard sample preparation conditions employing an aqueous buffered milieu and typically monochromatic excitation. This allowed superresolution imaging and studies on the aggregation state of modified tobacco mosaic virus particles on the nanoscale with a single-molecule localization accuracy of better than 8 nm, using standard fluorescent dyes in the visible spectrum. To gain a better understanding of cell entry mechanisms during influenza A virus infection, SPDM was used in conjunction with algorithms for distance and cluster analyses to study changes in the distribution of virus particles themselves or in the distribution of infection-related proteins, the hepatocyte growth factor receptors, in the cell membrane on the single-molecule level. Not requiring TIRF (total internal reflection) illumination, SPDM was also applied to study the molecular arrangement of gp36.5/m164 glycoprotein (essentially associated with murine cytomegalovirus infection) in the endoplasmic reticulum and the nuclear membrane inside cells with single-molecule resolution. On the basis of the experimental evidence so far obtained, we finally discuss additional application perspectives of localization microscopy approaches for the fast detection and identification of viruses by multi-color SPDM and combinatorial oligonucleotide fluorescence in situ hybridization, as well as SPDM techniques for optimization of virus-based nanotools and biodetection devices.  相似文献   

18.
Developing treatments that inhibit skin aging is an important research project. Rejuvenation, which focuses on prevention of skin aging, is one of the major issues. Recent studies suggested that mesenchymal stem cells (MSCs) secrete many cytokines, which are important in wound healing. In this study, we investigated the effect of human umbilical cord blood-derived mesenchymal stem cells conditioned media (USC-CM) in cutaneous wound healing and collagen synthesis. We found that USC-CM has many useful growth factors associated with skin rejuvenation, such as Epithelial Growth Factor (EGF), basic Fibroblast Growth Factor (bFGF), Platelet Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Collagen type 1, and especially, one of the rejuvenation factors, the growth differentiation factor-11 (GDF-11). Our in vitro results showed that USC-CM stimulate growth and extracellular matrix (ECM) production of Human Dermal Fibroblasts (HDFs) compared to those of other MSCs conditioned media (CM) from different origins. Moreover, we evaluated the roles of GDF-11. The results showed that GDF-11 accelerates growth, migration and ECM production of HDFs. Our In vivo results showed that topical treatment of USC-CM showed anti-wrinkle effect and significantly increased dermal density in women. In conclusion, USC-CM has various useful growth factors including GDF-11 that can stimulate skin rejuvenation by increasing growth and ECM production of HDFs.  相似文献   

19.
Scatter Factor, also known as Hepatocyte Growth Factor (SF/HGF), has pleiotropic functions including direct control of cell-cell and cell- substrate adhesion in epithelia. The subcellular localization of the SF/HGF receptor is controversial. In this work, the cell surface distribution of the SF/HGF receptor was studied in vivo in epithelial tissues and in vitro in polarized MDCK monolayers. A panel of monoclonal antibodies against the beta chain of the SF/HGF receptor stained the basolateral but not the apical surface of epithelia lining the lumen of human organs. Radiolabeled or fluorescent-tagged anti- receptor antibodies selectively bound the basolateral cell surface of MDCK cells, which form a polarized monolayer sealed by intercellular junctions, when grown on polycarbonate filters in a two-chamber culture system. The receptor was concentrated around the cell-cell contact zone, showing a distribution pattern overlapping with that of the cell adhesion molecule E-cadherin. The basolateral localization of the SF/HGF receptor was confirmed by immunoprecipitation after domain selective cell surface biotinylation. When cells were fully polarized the SF/HGF receptor became resistant to non-ionic detergents, indicating interaction with insoluble component(s). In pulse-chase labeling and surface biotinylation experiments, the newly synthesized receptor was found exclusively at the basolateral surface. We conclude that the SF/HGF receptor is selectively exposed at the basolateral plasma membrane domain of polarized epithelial cells and is targeted after synthesis to that surface by direct delivery from the trans-Golgi network.  相似文献   

20.
Mammary gland development and breast cancer growth require multiple factors both of endocrine and paracrine origin. We analyzed the roles of Epidermal Growth Factor Receptor (EGFR) and Hepatocyte Growth Factor Receptor (Met) in mammary epithelial cells and mammary tumor cells derived from a mutated-ErbB2 transgenic mice. By using highly specific tyrosine kinase inhibitors we found that MCF-10A and NMuMG mammary epithelial cell lines are totally dependent on EGFR activation for their growth and survival. Proliferation and 3D-morphogenesis assays showed that HGF had no role in maintaining mammary cell viability, but was the only cytokine able to rescue EGFR-inhibited mammary cells. Insulin-Like Growth Factor-I (IGF-I), basic-Fibroblast Growth Factor (b-FGF) and Neuregulin, which are well known mammary morphogenic factors, did not rescue proliferation or morphogenesis in these cell lines, following EGFR inhibition. Similarly, ErbB2-driven tumor cells are EGFR-dependent and also display HGF-mediated rescue. Western-blot analysis of the signaling pathways involved in rescue after EGFR inhibition indicated that concomitant ERK1/2 and AKT activation was exclusively driven by Met, but not by IGF-I or b-FGF. These results describe a unique role for EGFR and Met in mammary epithelial cells by showing that similar pathways can be used by tumorigenic cells to sustain growth and resist to EGFR-directed anti-tumorigenic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号