首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
在千岛湖片段化景观中选取20个陆桥岛屿和8个大陆样点,从2012年7月到2014年4月,按季度(春、夏、秋季)6次采用巴氏陷阱法收集地表甲虫,分析其物种多度、组成、多样性和季节动态,以及不同岛屿上的地表甲虫的物种多样性与岛屿面积和隔离度等岛屿空间特征的关系.结果表明: 共收集记录到地表甲虫26科101种3370头.大陆和大岛地表甲虫的物种丰富度有显著差异,且小岛地表甲虫密度显著高于大陆;大陆地表甲虫的物种组成变化较大,而岛屿上分布的地表甲虫的物种组成则变化较小.地表甲虫的物种丰富度与岛屿面积呈显著正相关,密度与隔离度呈显著正相关.夏季岛屿上地表甲虫物种丰富度高于春秋两季,岛屿与大陆样地的Shannon指数、Simpson指数和Pielou均匀度指数均在夏季最高、秋季最低.  相似文献   

2.
Summary Few studies of island biogeography have been made on islands in which the time of insularization is precisely known. We tested the effects of island formation on ant species diversity in a man-made lake in South Africa, to determine whether island effects are detectable after only 16 years of insularization. The number of ant species observed at trap-line censuses on islands was significantly correlated with island size (r=0.608; P<0.05) and ant species diversity was generally low compared with similar mainland habitats. Mean species number for all islands, including landbridge islands, was 5.5±3.3 species, and on mainland sites was 7.9±2.85 species. Island effects were more marked on islands <20 ha, which had a mean of 3.3±2.5 species per island. Species number on islands was inversely related to densities of the aggressive Anoplolepis custodiens and A. steingroeveri. These two species were only patchily distributed on mainlands, but these ants were nearly ubiquitous on small islands. Several lines of evidence suggest that this single species domination may be responsible for island effects. Island sites also differed in the number of ant species in different trophic groupings, tending to have fewer granivorous species than the mainland sites, but species in other diet groups were similar in both island and mainland habitats. We conclude that there have been marked changes in the ant faunas on islands smaller than 20 ha apparently due to changes in abundance of the dominant ant species. However, the causes of these changes are unknown.  相似文献   

3.
The principles of island biogeography are rarely applied to the animal assemblages of Amazonian river islands. Here, we compare bird assemblages of Amazonian river islands with a variety of mainland habitats. We also examine how bird species diversity and composition are related to island physical attributes. Birds were sampled with mist nets and qualitative censuses on 11 river islands and 24 mainland sites on the lower reaches of the Rio Negro in the Brazilian Amazon. Island bird assemblages were characterized by lower species richness and a higher abundance of a few dominant species. Additionally, the species composition of the islands was distinct from that of the mainland, including the nearby floodplain habitats. The number of bird species increased with island size and habitat diversity, and decreased with degree of isolation. In addition, small islands tended to harbor an impoverished subset of the species present on larger ones. Bird species diversity and composition on Amazonian river islands are likely influenced by the ecological succession and historical events affecting island formation. Considering their small total area across the Amazon basin, these insular fluvial communities could be disproportionately threatened by river channel disturbances related to climate change or hydroelectric dam development. Abstract in Portughese is available with online material.  相似文献   

4.
Biodiversity conservation is confronted with increasing risk of extinction in isolated small-area remnants and the limitation of species to colonize recently formed habitats. We hypothesized that the equilibrium pattern of forest herb layer in long-term fragmented landscape should comply with the theory of island biogeography. Forests on mineral soil islands located in large mires of western Estonia were considered as dispersal target habitats, and forests on mainland and peninsulas in mires as sources. Species richness was the lowest in mainland forests and the effect was confounded by habitat structure, suggesting a negative effect of silvicultural management in easily accessible forests. We observed the ‘small island effect’, i.e. greater overall species richness in small-area habitats, which was determined by the habitat preference of shade tolerant generalists. The average species richness of common mainland forest specialists varied little, but capitalizing on the traditional approach and analyzing only island data, weak effects of distance and habitat quality were detected. At single species level, unexpectedly, many habitat specialists were observed to have successfully dispersed to islands, indicating insufficient knowledge of the long-distance dispersal mechanisms of forest-dwelling plants. In fragmented forest landscapes the theory of island biogeography can be applied to habitat specialist plant species, but only regarding the effect of isolation and in conditions of persistent forest structural quality. In the light of global changes, optimized conservation planning should primarily target on (i) the conservation of ancient habitat fragments independent of their current area, and (ii) the promotion of diversity of potential dispersal vectors in the landscape.  相似文献   

5.
Isolation effects on species richness of woody plants were investigated in a system of islands that were created by the filling of the Clarks Hill Reservoir, Georgia. This reservoir was built between 1946–1954. Some islands were logged and cleared of woody plants prior to the filling of the reservoir and others were not logged. The presence of logged versus unlogged islands in the same system allowed us to test whether and how geographical isolation interacts with island history and species-specific dispersal properties in determining patterns of among-island variation in species number. Thirty-six years after the islands were created, logged islands had significantly fewer species of woody plants than unlogged ones. On logged islands, total number of woody species was negatively correlated with distance to the closest mainland (r=–0.95). On unlogged islands, variation in species number was very low (CV=4.9%) and was not correlated with distance to the mainland. These results indicate that the studied system as a whole has not yet reached equilibrium. However, the mean number of species on unlogged islands was very close to the intercept of the regression obtained for logged islands, suggesting that islands close to the mainland have already reached their equilibrium species richness. This conclusion is consistent with predictions of island biogeography theory. When species representing different dispersal properties were analyzed separately, statistically significant distance effects were obtained for bird-dispersed species (r=0.88) and for species with no adaptations to bird or wind dispersal (r=0.81). Wind-dispersed species did not show a decrease in species number with increasing isolation, but their relative frequency was positively and significantly correlated with distance to the mainland (r=0.94). Historical factors, as well as differences among species in dispersal properties, are important in explaining patterns of among-island variation in species number.  相似文献   

6.
  • 1 For over three decades the equilibrium theory of island biogeography has galvanized studies in ecological biogeography. Studies of oceanic islands and of natural habitat islands share some similarities to continental studies, particularly in developed regions where habitat fragmentation results from many land uses. Increasingly, remnant habitat is in the form of isolates created by the clearing and destruction of natural areas. Future evolution of a theory to predict patterns of species abundance may well come from the application of island biogeography to habitat fragments or isolates.
  • 2 In this paper we consider four factors other than area and isolation that influence the number and type of mammal species coexisting in one place: habitat diversity, habitat disturbance, species interactions and guild assembly rules. In all examples our data derive from mainland habitat, fragmented to differing degrees, with different levels of isolation.
  • 3 Habitat diversity is seen to be a good predictor of species richness. Increased levels of disturbance produce a relatively greater decrease in species richness on smaller than on larger isolates. Species interactions in the recolonization of highly disturbed sites, such as regenerating mined sites, is analogous to island colonization. Species replacement sequences in secondary successions indicate not just how many, but which species are included. Lastly, the complement of species established on islands, or in insular habitats, may be governed by guild assembly rules. These contributions may assist in taking a renewed theory into the new millennium.
  相似文献   

7.
Aim The influence of physiographic and historical factors on species richness of native and non‐native vascular plants on 22 coastal islands was examined. Location Islands off the coast of north‐eastern USA and south‐eastern Canada between 41° and 45° N latitude were studied. Island size ranges from 3 to 26,668 ha. All islands were deglaciated between 15,000 and 11,000 yr bp ; all but the four New Brunswick islands were attached to the mainland until rising sea level isolated them between 14,000 and 3800 yr bp . Methods Island species richness was determined from floras compiled or revised since 1969. Simple and multiple regression and rank correlation analysis were employed to assess the relative influence of independent variables on species richness. Potential predictors included island area, latitude, elevation, distance from the mainland, distance from the nearest larger island, number of soil types, years since isolation, years since deglaciation, and human population density. Results Native vascular plant species richness for the 22 islands in this study is influenced most strongly by island area, latitude, and distance from the nearest larger island; richness increases with island area, but decreases with latitude and distance from the nearest larger island as hypothesized. That a similar model employing distance from the mainland does not meet the critical value of P confirms the importance of the stepping‐stone effect. Habitat diversity as measured by number of soil types is also an important predictor of native plant species richness, but at least half of its influence can be attributed to island area, with which it is correlated. Two historical factors, years since deglaciation and years since isolation, also appear to be highly correlated with native species richness, but their influence cannot be separated from that of latitude for the present sample size. Non‐native vascular plant species richness is influenced primarily by island area and present‐day human population density, although human population density may be a surrogate for the cumulative effect of several centuries of anthropogenic impacts related to agriculture, hunting, fishing, whaling, tourism, and residential development. Very high densities of ground‐nesting pelagic birds may account for the high percentage of non‐native species on several small northern islands. Main conclusions Many of the principles of island biogeography that have been applied to oceanic islands apply equally to the 22 islands in this study. Native vascular plant species richness for these islands is strongly influenced by physiographic factors. Influence of two historical factors, years since deglaciation and years since isolation, cannot be assessed with the present sample size. Non‐native vascular plant species richness is influenced by island area as well as by human population density; human population density may be a surrogate for other anthropogenic impacts.  相似文献   

8.
Ian Abbott 《Oecologia》1978,33(2):221-233
Summary New evidence from the passerine faunas of islands off Southwestern Australia agrees with the hypothesis that the passerine faunas of Australian and New Zealand islands are impoverished because most passerine species are poor colonizers. Dispersal of landbirds onto Carnac Island near Perth was infrequent, and many of those species that arrived were represented by single birds. Comparison of similarly structured island and mainland habitats showed that island habitats still have fewer passerine bird species than mainland habitats. Island bird faunas are more stable over short periods of time than over long periods; this is contrary to island avifaunas in the Northern Hemisphere.The following features typify the avifaunas of Australian islands: immigration of species of land birds occurs infrequently; (natural) extinction is rare; and the degree of saturation of the avifaunas is low. Without more direct evidence, competitive interactions should not be invoked to account for the species poverty of these insular avifaunas.  相似文献   

9.
Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.  相似文献   

10.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

11.
J.W. Fox 《Oikos》2006,113(2):376-382
Local species richness frequently is linearly related to the richness of the regional species pool from which the local community was presumably assembled. What, if anything, does this pattern imply about the relative importance of species interactions and dispersal as determinants of local species richness? Two recent papers by Hugueny and Cornell and He et al. propose that the classical island biogeography model of MacArthur and Wilson can help answer this question, by serving as a null model of the relationship between local (island) and regional (mainland) species richness in the absence of local species interactions. The two models make very different predictions, despite being derived from apparently‐similar assumptions. Here we reinterpret these two models and show that their contrasting predictions can be regarded as arising from different, implicit assumptions about how species abundances vary with species richness on the mainland. We derive a more general island biogeography model of local–regional richness relationships that explicitly incorporates mainland species abundance and subsumes the two previous models as limiting cases. The new model predicts that the local–regional richness relationship can range from nearly linear to strongly curvilinear, depending on how species abundances on the mainland vary with mainland richness, as well as on rates of immigration to and extinction from islands. Local species interactions are not necessary for producing curvilinear local–regional richness relationships. We discuss the implications of our new model for the interpretation of local–regional richness relationships.  相似文献   

12.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

13.
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species.  相似文献   

14.
We examined the relationship between plant species richness and biogeographical variables (island area, island maximum elevation, distance from nearest inhabited island, distance from nearest mainland) using a data set comprising 201 islands of the Aegean archipelago. We found that endemic species richness was strongly correlated to total species richness. Single-island endemic species richness was most strongly correlated to island maximum elevation, and then to island area, with an apparent small island effect for islands smaller than 47 km2. Total species richness was most strongly correlated to island area (with no apparent small island effect), and less strongly correlated to island maximum elevation. Distance from the mainland or other inhabited islands displayed limited predictive value in our data set. The slope of the relationship between species richness and geographical factors (island area, elevation, distance from island/mainland) was steeper for endemic species richness than for total richness. Finally, the different scales of endemicity (single-island endemics, island group endemics and Aegean regional endemics) displayed similar qualitative trends and only differed quantitatively. Thus, we conclude that different biogeographical factors act as drivers for total species richness than for endemic species richness.  相似文献   

15.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

16.
Island communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.  相似文献   

17.
Isolation is a driving factor of species richness and other island community attributes. Most empirical studies have investigated the effect of isolation measured as distance to the nearest continent. Here we expanded this perspective by comparing the explanatory power of seventeen isolation metrics in sixty‐eight variations for vascular plant species richness on 453 islands worldwide. Our objectives were to identify ecologically meaningful metrics and to quantify their relative importance for species richness in a globally representative data set. We considered the distances to the nearest mainland and to other islands, stepping stone distances, the area of surrounding landmasses, prevailing wind and ocean currents and climatic similarity between source and target areas. These factors are closely linked to colonization and maintenance of plant species richness on islands. We tested the metrics in spatial multi‐predictor models accounting for area, climate, topography and island geology. Besides area, isolation was the second most important factor determining species richness on the studied islands. A model including the proportion of surrounding land area as the isolation metric had the highest predictive power, explaining 86.1% of the variation. Distances to large islands, stepping stone distances and distances to climatically similar landmasses performed slightly better than distance to the nearest mainland. The effect of isolation was weaker for large islands suggesting that speciation counteracts the negative effect of isolation on immigration on large islands. Continental islands were less affected by isolation than oceanic islands. Our results suggest that a variety of immigration mechanisms influence plant species richness on islands and we show that this can be detected at macro‐scales. Although the distance to the nearest mainland is an adequate and easy‐to‐calculate measure of isolation, accounting for stepping stones, large islands as source landmasses, climatic similarity and the area of surrounding landmasses increases the explanatory power of isolation for species richness.  相似文献   

18.
Two processes are thought to generate positive relationships between species richness and island area. The areaper se hypothesis states that larger islands maintain larger populations, which are less susceptible to extinction. The habitat hypothesis states that larger islands contain more habitats, and therefore a greater number of habitat specialists. However, the importance of each mechanism is debated. I tested the areaper se and habitat hypotheses by comparing relationships between plant abundance, age and island area in five shrub species on islands off the coast of British Columbia, Canada. Results showed that two shrub species increased in both abundance and age with island area. The remaining three species showed no differences in abundance and age with island area. Conifer abundances increased with island area, which generated differences in habitat availability. Smaller islands were dominated by open habitat, while larger islands contained both open and forested habitats. Changes in habitat availability with island area could explain patterns in plant abundance and age. The two species that increased in abundance with island area were commonly found in conifer forest on the mainland, and their distributions were consistent with the distribution forest habitat. Positive relationships between plant age and island area in these two species may result from lower survivorship in the open habitat, which dominated small islands. The three species that showed no relationship between abundance and island area are commonly found in open habitat on the mainland, and their island distributions paralleled the availability of open habitat on islands. Similar plant ages on different sized islands may result from their occurrence in open habitat on both large and small islands. Overall results support the habitat hypothesis and indicate that species distributions result from the interaction between habitat affinities and changes in habitat availability with island area.  相似文献   

19.
Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction‐immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles.  相似文献   

20.
Island biogeography theory, created initially to study diversity patterns on islands, is often applied to habitat fragments. A key but largely untested assumption of this application of theory is that landscape matrix species composition is non‐overlapping with that of the islands. We tested this assumption in successional old field patches in a closely mowed matrix, and because our patches are appropriately viewed as sets of contiguous habitat units we studied patterns of species richness per unit area. Previous studies at our site did not find that diversity patterns on patch ‘islands’ conformed to predictions of island biogeography theory. Our results indicate that when matrix species are removed from the patch samples, diversity patterns conform better to theory. We suggest that classical island theory remains an appropriate tool to study diversity patterns in fragmented habitats, but that allowances should be made for spill‐over colonization of ‘islands’ from the ‘sea’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号