首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pulmonary arterial smooth muscle cells (PASMC), acute hypoxia increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) release from the sarcoplasmic reticulum (SR) and Ca(2+) influx through store- and voltage-operated Ca(2+) channels in sarcolemma. To evaluate the mechanisms of hypoxic Ca(2+) release, we measured [Ca(2+)](i) with fluorescent microscopy in primary cultures of rat distal PASMC. In cells perfused with Ca(2+)-free Krebs Ringer bicarbonate solution (KRBS), brief exposures to caffeine (30 mM) and norepinephrine (300 μM), which activate SR ryanodine and inositol trisphosphate receptors (RyR, IP(3)R), respectively, or 4% O(2) caused rapid transient increases in [Ca(2+)](i), indicating intracellular Ca(2+) release. Preexposure of these cells to caffeine, norepinephrine, or the SR Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA; 10 μM) blocked subsequent Ca(2+) release to caffeine, norepinephrine, and hypoxia. The RyR antagonist ryanodine (10 μM) blocked Ca(2+) release to caffeine and hypoxia but not norepinephrine. The IP(3)R antagonist xestospongin C (XeC, 0.1 μM) blocked Ca(2+) release to norepinephrine and hypoxia but not caffeine. In PASMC perfused with normal KRBS, acute hypoxia caused a sustained increase in [Ca(2+)](i) that was abolished by ryanodine or XeC. These results suggest that in rat distal PASMC 1) the initial increase in [Ca(2+)](i) induced by hypoxia, as well as the subsequent Ca(2+) influx that sustained this increase, required release of Ca(2+) from both RyR and IP(3)R, and 2) the SR Ca(2+) stores accessed by RyR, IP(3)R, and hypoxia functioned as a common store, which was replenished by a CPA-inhibitable Ca(2+)-ATPase.  相似文献   

2.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

3.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

4.
The anorectic agent dexfenfluramine (dex) causes the development of primary pulmonary hypertension in susceptible patients by an unknown mechanism. We compared the effects of dex with those of its major metabolite, nordexfenfluamine (nordex), in the isolated perfused rat lung and in isolated rings of resistance pulmonary arteries. Nordex caused a dose-dependent and more intense vasoconstriction, which can be inhibited by the nonspecific 5-hydroxytryptamine type 2 (5-HT(2)) blocker ketanserin. Similarly a rise in cytosolic calcium concentration ([Ca(2+)](i)) in dispersed pulmonary artery smooth muscle cells (PASMCs) induced by nordex could be prevented by ketanserin. Unlike prior observations with dex, nordex did not inhibit K(+) current or cause depolarization in PASMCs. Removal of Ca(2+) from the tissue bath or addition of nifedipine (1 microM) reduced ring contraction to nordex by 60 +/- 9 and 63 +/- 4%, respectively. The addition of 2-aminoethoxydiphenyl borate (2-APB), a blocker of store-operated channels and the inositol 1,4,5-trisphosphate receptor, caused a dose-dependent decrease in the ring contraction elicited by nordex. The combination of 2-APB (10 microM) and nifedipine (1 microM) completely ablated the nordex contraction. Likewise the release of Ca(2+) from the sarcoplasmic reticulum by cyclopiazonic acid markedly reduced the nordex contraction while leaving the KCl contraction unchanged. We conclude that nordex may be responsible for much of the vasoconstriction stimulated by dex, through the activation of 5-HT(2) receptors and that the [Ca(2+)](i) increase in rat PASMCs caused by dex/nordex is due to both influx of extracellular Ca(2+) and release of Ca(2+) from the sarcoplasmic reticulum.  相似文献   

5.
Prolactin (PRL) cells from the euryhaline tilapia, Oreochromis mossambicus, behave like osmoreceptors by responding directly to reductions in medium osmolality with increased secretion of the osmoregulatory hormone PRL. Extracellular Ca(2+) is essential for the transduction of a hyposmotic stimulus into PRL release. In the current study, the presence and possible role of intracellular Ca(2+) stores during hyposmotic stimulation was investigated using pharmacological approaches. Changes in intracellular Ca(2+) concentration were measured with fura-2 in isolated PRL cells. Intracellular Ca(2+) stores were depleted in dispersed PRL cells with thapsigargin (1 microM) or cyclopiazonic acid (CPA, 10 microM). Pre-incubation with thapsigargin prevented the rise in [Ca(2+)](i) induced by lysophosphatidic acid (LPA, 1 microM), an activator of the IP(3) signalling cascade, but did not prevent the hyposmotically-induced rise in [Ca(2+)](i) in medium with normal [Ca(2+)] (2mM). Pre-treatment with CPA produced similar results. Prolactin release from dispersed cells followed a pattern that paralleled observed changes in [Ca(2+)](i). CPA inhibited LPA-induced prolactin release but not hyposmotically-induced release. Xestospongin C (1microM), an inhibitor of IP(3) receptors, had no effect on hyposmotically-induced PRL release. Pre-exposure to caffeine (10mM) or ryanodine (1microM) did not prevent a hyposmotically-induced rise in [Ca(2+)](i). Taken together these results indicate the presence of IP(3) and ryanodine-sensitive Ca(2+) stores in tilapia PRL cells. However, the rapid rise in intracellular [Ca(2+)] needed for acute PRL release in response to hyposmotic medium can occur independently of these intracellular Ca(2+) stores.  相似文献   

6.
Slow waves determine frequency and propagation characteristics of contractions in the small intestine, yet little is known about mechanisms of slow wave regulation. We propose a role for intracellular Ca(2+), inositol 1,4,5,-trisphosphate (IP(3))-sensitive Ca(2+) release, and sarcoplasmic reticulum (SR) Ca(2+) content in the regulation of slow wave frequency because 1) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, a cytosolic Ca(2+) chelator, reduced the frequency or abolished the slow waves; 2) thapsigargin and cyclopiazonic acid (CPA), inhibitors of SR Ca(2+)-ATPase, decreased slow wave frequency; 3) xestospongin C, a reversible, membrane-permeable blocker of IP(3)-induced Ca(2+) release, abolished slow wave activity; 4) caffeine and phospholipase C inhibitors (U-73122, neomycin, and 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate) inhibited slow wave frequency; 5) in the presence of CPA or thapsigargin, stimulation of IP(3) synthesis with carbachol, norepinephrine, or phenylephrine acting on alpha(1)-adrenoceptors initially increased slow wave frequency but thereafter increased the rate of frequency decline, 6) thimerosal, a sensitizing agent of IP(3) receptors increased slow wave frequency, and 7) ryanodine, a selective modulator of Ca(2+)-induced Ca(2+) release, had no effect on slow wave frequency. In summary, these data are consistent with a role of IP(3)-sensitive Ca(2+) release and the rate of SR Ca(2+) refilling in regulation of intestinal slow wave frequency.  相似文献   

7.
Antagonists of myosin light chain (MLC) kinase (MLCK) and Rho kinase (ROK) are thought to inhibit hypoxic pulmonary vasoconstriction (HPV) by decreasing the concentration of phosphorylated MLC at any intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMC); however, these antagonists can also decrease [Ca(2+)](i). To determine whether MLCK and ROK antagonists alter Ca(2+) signaling in HPV, we measured the effects of ML-9, ML-7, Y-27632, and HA-1077 on [Ca(2+)](i), Ca(2+) entry, and Ca(2+) release in rat distal PASMC exposed to hypoxia or depolarizing concentrations of KCl. We performed parallel experiments in isolated rat lungs to confirm the inhibitory effects of these agents on pulmonary vasoconstriction. Our results demonstrate that MLCK and ROK antagonists caused concentration-dependent inhibition of hypoxia-induced increases in [Ca(2+)](i) in PASMC and HPV in isolated lungs and suggest that this inhibition was due to blockade of Ca(2+) release from the sarcoplasmic reticulum and Ca(2+) entry through store- and voltage-operated Ca(2+) channels in PASMC. Thus MLCK and ROK antagonists might block HPV by inhibiting Ca(2+) signaling, as well as the actin-myosin interaction, in PASMC. If effects on Ca(2+) signaling were due to decreased phosphorylated myosin light chain concentration, their diversity suggests that MLCK and ROK antagonists may have acted by inhibiting myosin motors and/or altering the cytoskeleton in a manner that prevented achievement of required spatial relationships among the cellular components of the response.  相似文献   

8.
We examined the contributions of the Ca(2+) channels of the sarcolemma and of the sarcoplasmic reticulum to electromechanical restitution. Extrasystoles (F(1)) were interpolated 40-600 ms following a steady-state beat (F(0)) in perfused rat ventricles paced at 2 or 3 Hz. Plots of F(1)/F(0) versus the extrasystolic interval consisted of phase I, which occurred before relaxation of the steady-state beat, and phase II, which occurred later. Phase I exhibited a period of enhanced left ventricular pressure development that coincided with action potential prolongation. Phase I was eliminated by -BAY K 8644 (100 nM) and FPL 64176 (150 nM), augmented by 3 microM thapsigargin plus 200 nM ryanodine and unaffected by KN-93 and KB-R7943. Phase II was accelerated by the Ca(2+) channel agonists and by isoproterenol but was eliminated by thapsigargin plus ryanodine. The results suggest that phase I of electromechanical restitution is caused by a transient L-type Ca(2+) current facilitation, whereas phase II represents the recovery of the ability of the sarcoplasmic reticulum to release Ca(2+).  相似文献   

9.
White C  McGeown G 《Cell calcium》2002,31(4):151-159
We describe experiments in which the low affinity indicator Oregon Green BAPTA 5N was used to record the spatially resolved changes in [Ca(2+)] from intracellular stores in rat gastric myocytes. Cells were loaded with the membrane permeant form of the indicator and imaged using a confocal scanning laser microscope. In doubly stained cells the Oregon Green signal colocalized with BIODIPY 558/568 Brefeldin A, a label for the endo/sarcoplasmic reticulum (SR) and Golgi apparatus. Oregon Green BAPTA 5N was calibrated in gastric myocytes, giving an in situ K(d) of 90 microM. The resting free [Ca(2+)] within the SR averaged 65 microM. A reversible decrease in Oregon Green fluorescence was observed on bath application of Inositol triphosphate (IP(3)) (10 microM) to permeabilized cells. Similar changes were also observed when cyclopiazonic acid (5 microM) was applied to intact myocytes, again with recovery of store [Ca(2+)] following drug washout. Identical patterns of Ca(2+) depletion were seen when caffeine (1 microM) and carbachol (10 microM) were applied sequentially to the same cells, suggesting that activation of ryanodine and IP(3)-sensitive channels can result in the release of Ca(2+) from the same regions of the SR.  相似文献   

10.
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced [Ca(2+)](i) response, although it abolished the [Ca(2+)](i) response to a second application of caffeine. To assess whether ryanodine was inducing a permanent depletion of the internal Ca(2+) stores, we measured the SR Ca(2+) level with Mag-Fura-2. The magnitude of the caffeine-induced reduction in the SR Ca(2+) level was not augmented by incubating cells with 1 microM ryanodine. Moreover, on removal of caffeine, the SR Ca(2+) levels partially recovered in 61% of the cells due to the activity of thapsigargin-sensitive SERCA pumps. Unexpectedly, 10 microM ryanodine instead of inducing complete depletion of SR Ca(2+) stores markedly reduced the caffeine-induced SR Ca(2+) response. It was necessary to previously inhibit SERCA pumps with thapsigargin for ryanodine to be able to induce caffeine-triggered permanent depletion of SR Ca(2+) stores. These data suggest that the effect of ryanodine on smooth muscle SR Ca(2+) stores was markedly affected by the activity of SERCA pumps. Our data highlight the importance of directly measuring SR Ca(2+) levels to determine the effect of ryanodine on the internal Ca(2+) stores.  相似文献   

11.
Xestospongin B, a macrocyclic bis-1-oxaquinolizidine alkaloid extracted from the marine sponge Xestospongia exigua, was highly purified and tested for its ability to block inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. In a concentration-dependent manner xestospongin B displaced [(3)H]IP(3) from both rat cerebellar membranes and rat skeletal myotube homogenates with an EC(50) of 44.6 +/- 1.1 microM and 27.4 +/- 1.1 microM, respectively. Xestospongin B, depending on the dose, suppressed bradykinin-induced Ca(2+) signals in neuroblastoma (NG108-15) cells, and also selectively blocked the slow intracellular Ca(2+) signal induced by membrane depolarization with high external K(+) (47 mM) in rat skeletal myotubes. This slow Ca(2+) signal is unrelated to muscle contraction, and involves IP(3) receptors. In highly purified isolated nuclei from rat skeletal myotubes, Xestospongin B reduced, or suppressed IP(3)-induced Ca(2+) oscillations with an EC(50) = 18.9 +/- 1.35 microM. In rat myotubes exposed to a Ca(2+)-free medium, Xestospongin B neither depleted sarcoplasmic reticulum Ca(2+) stores, nor modified thapsigargin action and did not affect capacitative Ca(2+) entry after thapsigargin-induced depletion of Ca(2+) stores. Ca(2+)-ATPase activity measured in skeletal myotube homogenates remained unaffected by Xestospongin B. It is concluded that xestospongin B is an effective cell-permeant, competitive inhibitor of IP(3) receptors in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.  相似文献   

12.
Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death   总被引:17,自引:0,他引:17  
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.  相似文献   

13.
Pancreatic beta-cells have ryanodine receptors but little is known about their physiological regulation. Previous studies have shown that arachidonic acid releases Ca(2+) from intracellular stores in beta-cells but the identity of the channels involved in the Ca(2+) release has not been elucidated. We studied the mechanism by which arachidonic acid induces Ca(2+) concentration changes in pancreatic beta-cells. Cytosolic free Ca(2+) concentration was measured in fura-2-loaded INS-1E cells and in primary beta-cells from Wistar rats. The increase of cytosolic Ca(2+) concentration induced by arachidonic acid (150microM) was due to both Ca(2+) release from intracellular stores and influx of Ca(2+) from extracellular medium. 5,8,11,14-Eicosatetraynoic acid, a non-metabolizable analogue of arachidonic acid, mimicked the effect of arachidonic acid, indicating that arachidonic acid itself mediated Ca(2+) increase. The Ca(2+) release induced by arachidonic acid was from the endoplasmic reticulum since it was blocked by thapsigargin. 2-Aminoethyl diphenylborinate (50microM), which is known to inhibit 1,4,5-inositol-triphosphate-receptors, did not block Ca(2+) release by arachidonic acid. However, ryanodine (100microM), a blocker of ryanodine receptors, abolished the effect of arachidonic acid on Ca(2+) release in both types of cells. These observations indicate that arachidonic acid is a physiological activator of ryanodine receptors in beta-cells.  相似文献   

14.
Measurements of sarcoplasmic reticulum (SR) Ca(2+) uptake were made from aliquots of dissociated permeabilized ventricular myocytes using fura 2. Equilibration with 10 mM oxalate ensured a reproducible exponential decline of [Ca(2+)] from 600 nM to a steady state of 100-200 nM after addition of Ca(2+). In the presence of 5 microM ruthenium red, which blocks the ryanodine receptor, the time course of the decline of [Ca(2+)] can be modeled by a Ca(2+)-dependent uptake process and a fixed Ca(2+) leak. Partial inhibition of the Ca(2+) pump with 1 microM cyclopiazonic acid or 50 nM thapsigargin reduced the time constant for Ca(2+) uptake but did not affect the SR Ca(2+) leak. Addition of 10 mM inorganic phosphate (P(i)) decreased the rate of Ca(2+) accumulation by the SR and increased the Ca(2+) leak rate. This effect was reversed on addition of 10 mM phosphocreatine. 10 mM P(i) had no effect on Ca(2+) leak from the SR after complete inhibition of the Ca(2+) pump. In conclusion, P(i) decreases the Ca(2+) uptake capacity of cardiac SR via a decrease in pump rate and an increase in Ca(2+) pump-dependent Ca(2+) leak.  相似文献   

15.
Reactive oxygen species (ROS) generated from NADPH oxidases and mitochondria have been implicated as key messengers for pulmonary vasoconstriction and vascular remodeling induced by agonists and hypoxia. Since Ca(2+) mobilization is essential for vasoconstriction and cell proliferation, we sought to characterize the Ca(2+) response and to delineate the Ca(2+) pathways activated by hydrogen peroxide (H(2)O(2)) in rat intralobar pulmonary arterial smooth muscle cells (PASMCs). Exogenous application of 10 microM to 1 mM H(2)O(2) elicited concentration-dependent increase in intracellular Ca(2+) concentration in PASMCs, with an initial rise followed by a plateau or slow secondary increase. The initial phase was related to intracellular release. It was attenuated by the inositol trisphosphate (IP(3)) receptor antagonist 2-aminoethyl diphenylborate, ryanodine, or thapsigargin, but was unaffected by the removal of Ca(2+) in external solution. The secondary phase was dependent on extracellular Ca(2+) influx. It was unaffected by the voltage-gated Ca(2+) channel blocker nifedipine or the nonselective cation channel blockers SKF-96365 and La(3+), but inhibited concentration dependently by millimolar Ni(2+), and potentiated by the Na(+)/Ca(2+) exchange inhibitor KB-R 7943. H(2)O(2) did not alter the rate of Mn(2+) quenching of fura 2, suggesting store- and receptor-operated Ca(2+) channels were not involved. By contrast, H(2)O(2) elicited a sustained inward current carried by Na(+) at -70 mV, and the current was inhibited by Ni(2+). These results suggest that H(2)O(2) mobilizes intracellular Ca(2+) through multiple pathways, including the IP(3)- and ryanodine receptor-gated Ca(2+) stores, and Ni(2+)-sensitive cation channels. Activation of these Ca(2+) pathways may play important roles in ROS signaling in PASMCs.  相似文献   

16.
Hypoxic pulmonary vasoconstriction (HPV) requires Ca(2+) influx through store-operated Ca(2+) channels (SOCC) in pulmonary arterial smooth muscle cells (PASMC) and is greater in distal than proximal pulmonary arteries (PA). SOCC may be composed of canonical transient receptor potential (TRPC) proteins and activated by stromal interacting molecule 1 (STIM1). To assess the possibility that HPV is greater in distal PA because store-operated Ca(2+) entry (SOCE) is greater in distal PASMC, we measured intracellular Ca(2+) concentration ([Ca(2+)](i)) and SOCE in primary cultures of PASMC using fluorescent microscopy and the Ca(2+)-sensitive dye fura 2. Both hypoxia (4% O(2)) and KCl (60 mM) increased [Ca(2+)](i). Responses to hypoxia, but not KCl, were greater in distal cells. We measured SOCE in PASMC perfused with Ca(2+)-free solutions containing cyclopiazonic acid to deplete Ca(2+) stores in sarcoplasmic reticulum and nifedipine to prevent Ca(2+) entry through L-type voltage-operated Ca(2+) channels. Under these conditions, the increase in [Ca(2+)](i) caused by restoration of extracellular Ca(2+) and the decrease in fura 2 fluorescence caused by Mn(2+) were greater in distal PASMC, indicating greater SOCE. Moreover, the increase in SOCE caused by hypoxia was also greater in distal cells. Real-time quantitative polymerase chain reaction analysis of PASMC and freshly isolated deendothelialized PA tissue demonstrated expression of STIM1 and five of seven known TRPC isoforms (TRPC1 > TRPC6 > TRPC4 > TRPC3 approximately TRPC5). For both protein, as measured by Western blotting, and mRNA, expression of STIM1, TRPC1, TRPC6, and TRPC4 was greater in distal than proximal PASMC and PA. These results provide further support for the importance of SOCE in HPV and suggest that HPV is greater in distal than proximal PA because greater numbers and activation of SOCC in distal PASMC generate bigger increases in [Ca(2+)](i).  相似文献   

17.
The histidine-rich Ca(2+) binding protein (HRC) is a high capacity Ca(2+) binding protein in the sarcoplasmic reticulum (SR). Because HRC appears to interact directly with triadin, HRC may play a role in the regulation of Ca(2+) release during excitation-contraction coupling. In this study, we examined the physiological effects of HRC overexpression in rat neonatal cardiomyocytes. Both caffeine-induced and depolarization-induced Ca(2+) release from the SR were increased significantly in the HRC overexpressing cardiomyocytes. Consistently, the Ca(2+) content, normally depleted from the SR in the presence of cyclopiazonic acid (CPA), remained elevated in these cells. In contrast, the density and the ryanodine-binding kinetics of the ryanodine receptor (RyR)/Ca(2+) release channel were slightly reduced or not significantly altered in the HRC overexpressing cardiomyocytes. We suggest that HRC is involved in the regulation of releasable Ca(2+) content into the SR.  相似文献   

18.
The microsomal Ca-ATPase inhibitor thapsigargin induces in rat salivary acinar cells [Ca2+]i oscillations which, though similar to those activated by agonists, are independent of inositol phosphates or inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores (Foskett, J. K., Roifman, C., and Wong, D. (1991) J. Biol. Chem. 266, 2778-2782). To examine whether the oscillation mechanism resides in another, thapsigargin- and IP3-insensitive intracellular store, we examined the effects of caffeine and ryanodine, known modulators of Ca2+ release from sarcoplasmic reticulum in excitable cells. Oscillations were induced by caffeine (1-20 mM) in nonoscillating thapsigargin-treated acinar cells, which required the continued presence of caffeine, whereas caffeine was without effect or reduced oscillation amplitude in oscillating cells. Ryanodine (10-50 microM) inhibited oscillations in most of the cells. These results suggest that Ca2+ oscillations in parotid acinar cells are driven by periodic Ca2+ release from an IP3-insensitive Ca2+ store with properties similar to sarcoplasmic reticulum of excitable cells.  相似文献   

19.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

20.
The cellular and molecular processes underlying the regulation of ryanodine receptor (RyR) Ca(2+) release in smooth muscle cells (SMCs) are incompletely understood. Here we show that FKBP12.6 proteins are expressed in pulmonary artery (PA) smooth muscle and associated with type-2 RyRs (RyR2), but not RyR1, RyR3, or IP(3) receptors (IP(3)Rs) in PA sarcoplasmic reticulum. Application of FK506, which binds to FKBPs and dissociates these proteins from RyRs, induced an increase in [Ca(2+)](i) and Ca(2+)-activated Cl(-) and K(+) currents in freshly isolated PASMCs, whereas cyclosporin, an agent known to inhibit calcineurin but not to interact with FKBPs, failed to induce an increase in [Ca(2+)](i). FK506-induced [Ca(2+)](i) increase was completely blocked by the RyR antagonist ruthenium red and ryanodine, but not the IP(3)R antagonist heparin. Hypoxic Ca(2+) response and hypoxic vasoconstriction were significantly enhanced in FKBP12.6 knockout mouse PASMCs. FK506 or rapamycin pretreatment also enhanced hypoxic increase [Ca(2+)](i), but did not alter caffeine-induced Ca(2+) release (SR Ca(2+) content) in PASMCs. Norepinephrine-induced Ca(2+) release and force generation were also markedly enhanced in PASMCs from FKBP12.6 null mice. These findings suggest that FKBP12.6 plays an important role in hypoxia- and neurotransmitter-induced Ca(2+) and contractile responses by regulating the activity of RyRs in PASMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号