首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.  相似文献   

4.
Aberrant Stat3 activation and signaling contribute to malignant transformation by promoting cell cycle progression, inhibiting apoptosis, and mediating tumor immune evasion. Stat3 inhibition in tumor cells induces the expression of chemokines and proinflammatory cytokines, so we proposed to apply Stat3-inhibited breast cancer cells as a source of immunogens to induce an antitumor immune response. Studies were performed in two murine breast cancer models in which Stat3 is activated: progestin-dependent C4HD cells and 4T1 cells. We immunized BALB/c mice with irradiated cancer cells previously transfected with a dominant-negative Stat3 vector (Stat3Y705F) in either a prophylactic or a therapeutic manner. Prophylactic administration of breast cancer cells transfected with Stat3Y705F (Stat3Y705F-breast cancer cells) inhibited primary tumor growth compared with administration of empty vector-transfected cells in both models. In the 4T1 model, 50% of the challenged mice were tumor free, and the incidence of metastasis decreased by 90%. In vivo assays of C4HD tumors showed that the antitumor immune response involves the participation of CD4(+) T cells and cytotoxic NK cells. Therapeutic immunization with Stat3Y705F-breast cancer cells inhibited tumor growth, promoted tumor cell differentiation, and decreased metastasis. Furthermore, inhibition of Stat3 activation in breast cancer cells induced cellular senescence, contributing to their immunogenic phenotype. In this work, we provide preclinical proof of concept that ablating Stat3 signaling in breast cancer cells results in an effective immunotherapy against breast cancer growth and metastasis. Moreover, our findings showing that Stat3 inactivation results in induction of a cellular senescence program disclose a potential mechanism for immunotherapy research.  相似文献   

5.
The programmed death-1 (PD-1) molecule is mainly expressed on functionally “exhausted” CD8+ T cells, dampening the host antitumor immune response. We evaluated the ratio between effective and regulatory T cells (Tregs) and PD-1 expression as a prognostic factor for operable breast cancer patients. A series of 218 newly diagnosed invasive breast cancer patients who had undergone primary surgery at Ruijin Hospital were identified. The influence of CD8+ cytotoxic T lymphocytes, FOXP3+ (Treg cell marker), and PD-1+ immune cell counts on prognosis was analyzed utilizing immunohistochemistry. Both PD-1+ immune cells and FOXP3+ Tregs counts were significantly associated with unfavorable prognostic factors. In bivariate, but not multivariate analysis, high tumor infiltrating PD-1+ cell counts correlated with significantly shorter patient survival. Our results suggest a prognostic value of the PD-1+ immune cell population in such breast cancer patients. Targeting the PD-1 pathway may be a feasible approach to treating patients with breast cancer.  相似文献   

6.
Cancer immunotherapy has been shown to achieve significant antitumor effects in a variety of malignancies. Out of all the immune checkpoint molecules, PD-1/PD-L1 inhibitor therapy has achieved great success. However, only some cancer patients benefit from this treatment strategy owing to drug resistance. Therefore, identifying the underlying modulators of the PD-1/PD-L1 pathway to completely comprehend the mechanisms of anti-PD-1/PD-L1 treatment is crucially important. Recent research has validated that m6A modification plays a critical role in the PD-1/PD-L1 axis, thus regulating the immune response and immunotherapy strategies. In this review, we summarized the latest research on the regulation of m6A modification in PD-1/PD-L1 pathways in cancer proliferation, invasion, and prognosis based on different kinds of cancers and discussed the possible mechanisms. We also reviewed m6A-associated lncRNAs in the regulation of the PD-1/PD-L1 pathway. More importantly, we outlined the influence of m6A modulation on anti-PD-1 therapy and m6A-related molecules that could predict the curative effect of anti-PD-1/PD-L1 therapy. Further studies exploring the definitive regulation of m6A on the PD1/PD-1 pathway and immunotherapy are needed, which may address some of the current limitations in immunotherapy.  相似文献   

7.
The recent development of immunotherapy represents a significant breakthrough in cancer therapy. Several immunotherapies provide robust efficacy gains in a wide variety of cancers. However, in some patients the immune checkpoint blockade remains ineffective due to poor therapeutic response and tumor relapse. An improved understanding of the mechanisms underlying tumor-immune system interactions can improve clinical management of cancer. Here, we report preclinical data evaluating two murine antibodies corresponding to recent FDA-approved antibodies for human therapy, e.g. anti-CTLA-4 and anti-PD-1. We demonstrated in two mouse syngeneic grafting models of triple negative breast or colon cancer that the two antibodies displayed an efficient anticancer activity, which is enhanced by combination treatment in the breast cancer model. We also demonstrated that CTLA-4 targeting reduced metastasis formation in the colon cancer metastasis model. In addition, using cytometry-based multiplex analysis, we showed that anti-CTLA-4 and anti-PD-1 affected the tumor immune microenvironment differently and in particular the tumor immune infiltration. This work demonstrated anti-cancer effect of CTLA-4 or PD-1 blockade on mouse colon and triple negative breast and on tumor-infiltrating immune cell subpopulations that could improve our knowledge and benefit the breast and colon cancer tumor research community.  相似文献   

8.
Among the main promising systems to triggering therapeutic antitumor immunity is the blockade of immune checkpoints. Immune checkpoint pathways regulate the control and eradication of infections, malignancies, and resistance against a host of autoantigens. Initiation point of the immune response is T cells, which have a critical role in this pathway. As several immune checkpoints are initiated by ligand–receptor interactions, they can be freely blocked by antibodies or modulated by recombinant forms of ligands or receptors. Antibodies against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) were the first immunotherapeutics that achieved the US Food and Drug Administration approval. Preliminary clinical results with the blockers of additional immune checkpoint proteins, such as programmed cell death protein 1 (PD-1) indicate extensive and different chances to boost antitumor immunity with the objective of conferring permanent clinical effects. This study provides an overview of the immune checkpoint pathways, including CTLA-4, PD-1, lymphocyte activation gene 3, T-cell immunoglobulin and mucin domain 3, B7-H3, and diacylglycerol kinase α and implications of their inhibition in the cancer therapy.  相似文献   

9.
The immune system can act as an extrinsic suppressor of tumors. Therefore, tumor progression depends in part on mechanisms that downmodulate intrinsic immune surveillance. Identifying these inhibitory pathways may provide promising targets to enhance antitumor immunity. Here, we show that Stat3 is constitutively activated in diverse tumor-infiltrating immune cells, and ablating Stat3 in hematopoietic cells triggers an intrinsic immune-surveillance system that inhibits tumor growth and metastasis. We observed a markedly enhanced function of dendritic cells, T cells, natural killer (NK) cells and neutrophils in tumor-bearing mice with Stat3(-/-) hematopoietic cells, and showed that tumor regression requires immune cells. Targeting Stat3 with a small-molecule drug induces T cell- and NK cell-dependent growth inhibition of established tumors otherwise resistant to direct killing by the inhibitor. Our findings show that Stat3 signaling restrains natural tumor immune surveillance and that inhibiting hematopoietic Stat3 in tumor-bearing hosts elicits multicomponent therapeutic antitumor immunity.  相似文献   

10.
11.
Immunotherapy has caused a paradigm shift in the treatment of several malignancies, particularly the blockade of programmed death-1 (PD-1) and its specific receptor/ligand PD-L1 that have revolutionized the treatment of a variety of malignancies, but significant durable responses only occur in a small percentage of patients, and other patients failed to respond to the treatment. Even those who initially respond can ultimately relapse despite maintenance treatment, there is considerable potential for synergistic combinations of immunotherapy and chemotherapy agents with immune checkpoint inhibitors into conventional cancer treatments. The clinical experience in the use of cytokines in the clinical setting indicated the efficiency of cytokine therapy in cancer immunotherapy. Combinational approaches to enhancing PD-L1/PD-1 pathways blockade efficacy with several cytokines such as interleukin (IL)-2, IL-15, IL-21, IL-12, IL-10, and interferon-α (IFN-α) may result in additional benefits. In this review, the current state of knowledge about PD-1/PD-L1 inhibitors, the date in the literature to ascertain the combination of anti-PD-1/PD-L1 antibodies with cytokines is discussed. Finally, it is noteworthy that novel therapeutic approaches based on the efficient combination of recombinant cytokines with the PD-L1/PD-1 blockade therapy can enhance antitumor immune responses against various malignancies.  相似文献   

12.
Combination of immunotherapy and chemotherapy has shown promise for cancer. Interleukin-7 (IL-7) can potentially enhance immune responses against tumor, while oxaliplatin (OXP), a platinum-based drug, can promote a favorable immune microenvironment and stimulate anticancer immune responses. We evaluated the anti-tumor activity of IL-7 combining OXP against a murine colon carcinoma in vitro and in vivo and studied the tumor immune microenvironment to investigate whether the combined treatment affects on the local immune cell populations. Utilizing lung and abdomen metastasis models by inoculation of CT26 mice colon cancer cells, we evaluated the anti-tumor efficacy of combining IL-7 and OXP in mice models. Tumor immune microenvironment was evaluated by flow cytometric analysis and immunohistochemical staining. Our study showed that the in vivo administration of IL-7 combined with OXP markedly inhibited the growth of tumors in lung and abdomen metastasis models of colon cancer. IL-7 alone had no effect on tumor growth in mice and IL-7 did not alter cell sensitivity to OXP in culture. The antitumor effect of combining IL-7 and OXP correlated with a marked increase in the number of tumor-infiltrating activated CD8+ T cells and a marked decrease in the number of regulatory T (Treg) cells in spleen. Our data suggest that OXP plus IL-7 treatment inhibits tumor cell growth by immunoregulation rather than direct cytotoxicity. Our findings justify further evaluation of combining IL-7 and chemotherapy as a novel experimental cancer therapy.  相似文献   

13.
《Translational oncology》2020,13(3):100738
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.  相似文献   

14.
15.
PReferentially expressed Antigen in Melanoma (PRAME) is a cancer testis antigen with restricted expression in somatic tissues and re-expression in poor prognostic solid tumours. PRAME has been extensively investigated as a target for immunotherapy, however, its role in modulating the anti-tumour immune response remains largely unknown. Here, we show that PRAME tumour expression is associated with worse survival in the TCGA breast cancer cohort, particularly in immune-unfavourable tumours. Using direct and indirect co-culture models, we found that PRAME overexpressing MDA-MB-468 breast cancer cells inhibit T cell activation and cytolytic potential, which could be partly restored by silencing of PRAME. Furthermore, silencing of PRAME reduced expression of several immune checkpoints and their ligands, including PD-1, LAG3, PD-L1, CD86, Gal-9 and VISTA. Interestingly, silencing of PRAME induced cancer cell killing to levels similar to anti-PD-L1 atezolizumab treatment. Comprehensive analysis of soluble inflammatory mediators and cancer cell expression of immune-related genes showed that PRAME tumour expression can suppress the expression and secretion of multiple pro-inflammatory cytokines, and mediators of T cell activation, differentiation and cytolysis. Together, our data indicate that targeting of PRAME offers a potential, novel dual therapeutic approach to specifically target tumour cells and regulate immune activation in the tumour microenvironment.  相似文献   

16.
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.  相似文献   

17.
Zingerone (ZO), an active phenolic agent derived from Zingiber officinale (Ginger), has many pharmacological properties such as antioxidant, antiangiogenic, and antitumor. However, its potential value in cancer and the mechanism by which ZO wields its therapeutic effects remain obscure. Therefore, in this current study, we explored the effects of ZO on suppressing cell proliferation and enhancing apoptosis in colon cancer cells (HCT116). Our results indicated that ZO significantly enhances the production of reactive oxygen species, lipid peroxidation (thiobarbituric acid reactive substance [TBARS]), and loss of cell viability; and reduces mitochondrial membrane potential and antioxidant levels (SOD, CAT, and GSH) in ZO‐treated HCT116 cells in a dose‐dependent (2.5, 5, and 10 µM) manner. Furthermore, ZO induces oxidative stress‐mediated apoptosis as evidenced by apoptotic morphological changes predicted by AO/EtBr, Hoechst staining and further confirmed by comet assay. Moreover, immunoblotting techniques showed that ZO treatment effectively enhances Bax, caspase‐9, and caspase‐3 expressions and decreases the expression of Bcl‐2 in colon cancer cells. Together, our results evidenced that the antitumor effects of ZO reduce cell proliferation and stimulate apoptosis through modulating pro‐ and antiapoptotic molecular events in HCT116 colon cancer cells. Therefore, based on our findings, ZO may be used as a therapeutic agent for the treatment of colon cancer.  相似文献   

18.
Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination.  相似文献   

19.
摘要:近年来,免疫治疗在晚期肾透明细胞癌的治疗中异军突起,使人们对于肾癌治疗有了全新的认识。肿瘤免疫治疗药物是通过抑制免疫检查点从而抑制肿瘤细胞免疫逃逸,使免疫细胞可以杀伤肿瘤细胞来发挥治疗作用。因此,了解肾透明细胞癌中免疫检查点相关免疫逃逸机制对于制定有效的治疗策略以及开发新的免疫治疗药物至关重要。本文对目前肾透明细胞癌中主要的免疫检查点(PD-1/PD-L1、CTLA-4、B7-H4、LAG-3、TIM-3和HLA-G)相关的免疫逃逸机制进行综述。  相似文献   

20.
Over the course of past few years, cancer immunotherapy has been accompanied with promising results. However, preliminary investigations with respect to immunotherapy concentrated mostly on targeting the immune checkpoints, nowadays, emerge as the most efficient strategy to raise beneficial antitumor immune responses. Programmed cell death protein 1 (PD-1) plays an important role in subsiding immune responses and promoting self-tolerance through suppressing the activity of T cells and promoting differentiation of regulatory T cells. PD-1 is considered as an immune checkpoint and protects against autoimmune responses through both induction of apoptosis in antigen-specific T cells and inhibiting apoptosis in regulatory T cells. Several clinical trials exerting PD-1 monoclonal antibodies as well as other immune-checkpoint blockades have had prosperous outcomes and opened new horizons in tumor immunotherapy. Nonetheless, a bulk of patients have failed to respond to these newly emerging immune-based approach and the survival rate was not satisfying. Additional strategies, especially combination therapies, has been initiated and been further promising. Attempts to identify novel and well-suited predictive biomarkers are also sensed. In this review, the promotion of cancer immunotherapy targeting PD-1 immunoinhibitory pathway is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号