首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Although ethanol abuse is the most common cause of pancreatitis, the mechanism of alcohol's effect on the pancreas is not well understood. Previously, we demonstrated that in vitro ethanol treatment of pancreatic acinar cells augmented the CCK-8-induced activation of NF-kappaB, a key signaling system involved in the inflammatory response of pancreatitis. In the present study, we determine the role for individual PKC isoforms in the sensitizing effect of ethanol on NF-kappaB activation. Dispersed rat pancreatic acini were treated with and without ethanol and then stimulated with CCK-8; 100 nM CCK-8 caused both NF-kappaB and PKC-delta, -epsilon, and -zeta activation, whereas 0.1 nM CCK-8 did not increase PKC-epsilon, PKC-zeta, or NF-kappaB activity. CCK-8 (0.1 nM) did activate PKC-delta. PKC-epsilon activator alone did not cause NF-kappaB activation; however, together with 0.1 nM CCK-8, it caused NF-kappaB activation. Ethanol activated PKC-epsilon without affecting other PKC isoforms or NF-kappaB activity. Of note, stimulation of acini with ethanol and 0.1 nM CCK-8 resulted in the activation of PKC-delta, PKC-epsilon, and NF-kappaB. The NF-kappaB activation to 0.1 nM CCK-8 in ethanol-pretreated acini was inhibited by both PKC-delta inhibitor and PKC-epsilon inhibitor. Taken together, these results demonstrate the different modes of activation of PKC isoforms and NF-kappaB in acini stimulated with ethanol, high-dose CCK-8, and low-dose CCK-8, and furthermore suggest that activation of both PKC-epsilon and -delta is required for NF-kappaB activation. These results suggest that ethanol enhances the CCK-8-induced NF-kappaB activation at least in part through its effects on PKC-epsilon.  相似文献   

2.
In the present study we have employed single cell imaging analysis to monitor the propagation of cholecystokinin-evoked Ca(2+) waves in mouse pancreatic acinar cells. Stimulation of cells with 1 nM CCK-8 led to an initial Ca(2+) release at the luminal cell pole and subsequent spreading of the Ca(2+) signal towards the basolateral membrane in the form of a Ca(2+) wave. Inhibition of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) activity by 1 microM thapsigargin, preincubation in the presence of 100 microM H(2)O(2) or inhibition of PKC with either 5 microM Ro31-8220 or 3 microM GF-109203-X all led to a faster propagation of CCK-8-induced Ca(2+) signals. The propagation of CCK-8-evoked Ca(2+) signals was slowed down by activation of PKC with 1 microM PMA, and preincubation of cells in the presence of H(2)O(2) counteracted the effect of PKC inhibition. The protonophore FCCP (100 nM) and the inhibitor of the mitochondrial Ca(2+)-uniporter Ru360 (10 microM) led to an increase in the propagation rate of CCK-8-evoked Ca(2+) waves. Finally, depolymerisation of actin cytoskeleton with cytochalasin D (10 microM) led to a faster propagation of CCK-8-evoked Ca(2+) signals. Stabilization of actin cytoskeleton with jasplakinolide (10 microM) did not induce significant changes on CCK-8-evoked Ca(2+) waves. Preincubation of cells in the presence of H(2)O(2) counteracted the effect of cytochalasin D on CCK-8-evoked Ca(2+) wave propagation. Our results suggest that spreading of cytosolic Ca(2+) waves evoked by CCK-8 can be modulated by low levels of oxidants acting on multiple Ca(2+)-handling mechanisms.  相似文献   

3.
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis.  相似文献   

4.
Store-operated Ca(2+) channels (SOC) are expressed in cultured human mesangial cells and activated by epidermal growth factor through a pathway involving protein kinase C (PKC). We used fura-2 fluorescence and patch clamp experiments to determine the role of PKC in mediating the activation of SOC after depletion of internal stores by thapsigargin. The measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) revealed that the thapsigargin-induced Ca(2+) entry pathway was abolished by calphostin C, a protein kinase C inhibitor. The PKC activator, phorbol 12-myristate 13-acetate (PMA), promoted a Ca(2+) influx that was significantly attenuated by calphostin C and La(3+) but not by diltiazem. Neither PMA nor calphostin C altered the thapsigargin-induced initial transient rise in [Ca(2+)](i). In cell-attached patch clamp experiments, the thapsigargin-induced activation of SOC was potentiated by PMA and abolished by both calphostin C and staurosporine. However, SOC was unaffected by thapsigargin when clamping [Ca(2+)](i) with 1,2-bis (o-Aminophenoxy)ethane-N,N,N',N'tetraacetic acid tetra(acetoxymethyl)ester. In the absence of thapsigargin, PMA and phorbol 12, 13-didecanoate evoked a significant increase in NP(O) of SOC, whereas calphostin C did not affect base-line channel activity. In inside-out patches, SOC activity ran down immediately upon excision but was reactivated significantly after adding the catalytic subunit of 0.1 unit/ml of PKC plus 100 microm ATP. Neither ATP alone nor ATP with heat-inactivated PKC rescued a rundown of SOC. Metavanadate, a general protein phosphatase inhibitor, also enhanced SOC activity in inside-out patches. Bath [Ca(2+)] did not significantly affect the channel activity in inside-out patch. These results indicate that the depletion of Ca(2+) stores activates SOC by PKC-mediated phosphorylation of the channel proteins or a membrane-associated complex.  相似文献   

5.
6.
The mechanism for oxytocin's (OT) stimulation of PGF(2alpha) secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca(2+) and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca(2+) by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF(2alpha) release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF(2alpha) secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) release. These results are consistent with the hypothesis that OT mobilizes Ca(2+) to activate a Ca(2+)-dependent PKC pathway to promote PGF(2alpha) secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

7.
PKC and the intracellular calcium signal are two well-known intracellular signaling pathways implicated in the induction of mast cell exocytosis. Both signals are modified by the presence or absence of HCO(3)(-) ions in the external medium. In this work, we studied the regulation of the exocytotic process by PKC isozymes and its relationship with HCO(3)(-) ions and PKC modulation of the calcium entry. The calcium entry, induced by thapsigargin and further addition of calcium, was inhibited by PMA, a PKC activator, and enhanced by 500 nM GF109203X, which inhibits Ca(2+)-independent PKC isoforms. PMA inhibition of the Ca(2+) entry was reverted by 500 and 50 nM GF109203X, which inhibit Ca(2+)-independent and Ca(2+)-dependent isoforms, respectively, and G?6976, a specific inhibitor of Ca(2+)-dependent PKCs. Thus, activation of Ca(2+)-dependent and Ca(2+)-independent PKC isoforms inhibit Ca(2+) entry in rat mast cells, either in a HCO(3)(-)-buffered or a HCO(3)(-)-free medium. PMA, GF109203X, G?6976 and rottlerin, a specific inhibitor of PKC delta, were also used to study the role of PKC isoforms in the regulation of exocytosis induced by thapsigargin, ionophore A23187 and PMA. The results demonstrate that Ca(2+)-dependent PKC isoforms inhibit exocytosis in a HCO(3)(-)-dependent way. Moreover, Ca(2+)-independent PKC delta was the main isoform implicated in promotion of Ca(2+)-dependent mast cell exocytosis in the presence or absence of HCO(3)(-). The role of PKC isoforms in the regulation of mast cell exocytosis depends on the stimulus and on the presence or absence of HCO(3)(-) ions in the medium, but it is independent of PKC modulation of the Ca(2+) entry.  相似文献   

8.
Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70-90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. An important conductor of this Ca(2+) is the basolaterally localized, intracellular Ca(2+) channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca(2+) signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca(2+). Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μM). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca(2+) wave from 9 to 18 μm/s (p < 0.0005; n = 18-22 cells/group); an increase in Ca(2+) wave speed was also observed with a change from physiologic concentrations of carbachol (1 μM) to a supraphysiologic concentration (1 mM) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10-16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca(2+) waves.  相似文献   

9.
Receptor-activated cytoplasmic calcium (Ca2+) oscillations have been investigated in single pancreatic acinar cells by microfluorimetry (Fura-2 as indicator). At submaximal concentrations of the agonists acetylcholine (ACh) and cholecystokinin octapeptide (CCK-8), both give rise to oscillatory changes in the cytosolic free calcium concentration ([Ca2+]i). The patterns of oscillations are markedly and consistently different for each of these two agonists. The ACh induced oscillations are superimposed upon a median elevation in background [Ca2+]i. The CCK-8 induced oscillations are of longer duration with [Ca2+]i returning to prestimulus levels between the discrete spikes. The ACh induced oscillations are rapidly abolished upon removal of extracellular Ca2+ while the CCK-8 induced oscillations persist for many minutes in the absence of external Ca2+. The CCK-8, but not the ACh, induced oscillations are increased in duration by the protein kinase C (PKC) inhibitor staurosporine and abolished by the PKC activating phorbol ester PMA. It is clear that CCK-8 and ACh do not activate receptor transduction mechanisms in an identical manner to generate oscillating [Ca2+]i signals.  相似文献   

10.
11.
Neither Pseudomonas aeruginosa nor flagellin affected cytosolic Ca(2+) concentration ([Ca](i)) in airway epithelial cell lines JME and Calu-3, but bacteria or flagellin activated NF-kappaB, IL-8 promoter, and IL-8 secretion. ATP (purinergic agonist) and thapsigargin (blocks Ca(2+) pump, releases endoplasmic reticulum Ca(2+), and triggers Ca(2+) entry through plasma membrane channels) both increased [Ca](i) but hardly stimulated NF-kappaB and IL-8. ATP and thapsigargin elicited larger, synergistic activations of NF-kappaB and IL-8 secretion when combined with flagellin. BAPTA-AM (to buffer [Ca](i)) or Ca(2+)-free solution reduced increases in [Ca](i) due to ATP or thapsigargin and also reduced NF-kappaB activation and IL-8 secretion triggered by flagellin, ATP, thapsigargin, ATP + flagellin, and thapsigargin + flagellin. IL-8 promoter analysis showed that AP-1 and CCAAT/enhancer-binding protein (C/EBP)beta/nuclear factor for IL-6 (NF-IL6) sites were important for IL-8 expression, and the NF-kappaB-binding site was critical for activation by all agonists and for activation by [Ca](i). Thus increased [Ca](i) was not required for P. aeruginosa- or flagellin-activated NF-kappaB and IL-8 expression and secretion, and increased [Ca](i) was only weakly stimulatory during activation by ATP or thapsigargin. However, ATP- or thapsigargin-induced increases in [Ca](i) synergized with flagellin or P. aeruginosa, and buffering or reducing [Ca](i) reduced these responses. Thus [Ca](i) plays an important regulatory role in P. aeruginosa- or flagellin-activated innate immune responses in airway epithelia. Dose-dependent responses indicated that flagellin-ATP synergism occurred most prominently at ATP concentrations ([ATP]) > 10 microM and [flagellin] >10(-8) g/ml and during steady increases rather than oscillations in [Ca](i).  相似文献   

12.
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.  相似文献   

13.
Exposure to ethanol for several days increases the number and function of dihydropyridine-sensitive Ca2+ channels in excitable tissues. In the neural cell line PC12, this process is blocked by inhibitors of protein kinase C (PKC), suggesting that PKC mediates ethanol-induced increases in Ca2+ channels. We report that treatment with 25-200 mM ethanol for 2-8 days increased PKC activity in PC12 cells and NG108-15 neuroblastoma-glioma cells. Detailed studies in PC12 cells showed that ethanol also increased phorbol ester binding and immunoreactivity to PKC delta and PKC epsilon. These changes were associated with increased PKC-mediated phosphorylation. Ethanol did not activate the enzyme directly, nor did ethanol increase levels of diacylglycerol. Ethanol-induced increases in PKC levels may promote up-regulation of Ca2+ channels, and may also regulate the expression and function of other proteins involved in cellular adaptation to ethanol.  相似文献   

14.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

15.
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.  相似文献   

16.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

17.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

18.
The physiological role of IP(3)-dependent Ca(2+) release in T cell activation was in question due to the contradictory findings that [8-(Diethylamino)octyl-3,4,5-trimethoxybenzoate, HCl] (TMB-8), an inhibitor of intracellular Ca(2+) mobilization, blocked T cell proliferation, curtailing specifically the level of released Ca(2+) did not affect T cell activation and T cell line lacking IP(3) receptor was defective in IL-2 production in response to TCR/CD3 ligand. In the present study we found that TMB-8 inhibited Concanavalin A (Con A)- but not PMA/Ionomycin-induced T cell proliferation in a reversible and dose-dependent manner. The kinetic study revealed that TMB-8 exerted the inhibitory effect at a very early step of T cell activation. The Ca(2+) ionophore ionomycin augmented instead of overcoming the inhibitory effect of TMB-8, although the same doses of ionomycin alone had no effect on Con A-induced T cell proliferation. PMA the metabolically stable, but not diacylglycerol (DAG) the metabolically labile, activator of protein Kinase C (PKC) completely overcome the antiproliferative effect of TMB-8. A specific DAG lipase inhibitor RHC80267 also overcome the effect of TMB-8. Taken together, these results showed that the process of Ca(2+) release through IP(3) receptor, not the released Ca(2+), is essential for the sustained phase of PKC activation during T cell proliferation.  相似文献   

19.
20.
The mechanism for oxytocin's (OT) stimulation of PGF2alpha secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca2+ and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca2+ by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF2alpha release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF2alpha secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF2alpha secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF2alpha release. These results are consistent with the hypothesis that OT mobilizes Ca2+ to activate a Ca2+-dependent PKC pathway to promote PGF2alpha secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号