首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
There are increasing reports that mesenchymal stem cells (MSCs) are present in various tissues other than bone marrow, including synovium. Here we investigated the optimal conditions for in vitro chondrogenesis of human synovium-derived MSCs and compared these cells with bone marrow-derived MSCs, especially in terms of their chondrogenesis potential. Synovium and bone marrow were harvested from six donors during knee operations for ligament injuries. Digested synovium cells or nucleated cells from bone marrow were expanded clonally. A pellet culture system was used for chondrogenesis, and the best combination of up to three cytokines of the seven assessed. Synovium-derived MSCs plated at a lower density expanded more rapidly. Contrary to previous reports, a combination of TGFbeta and dexamethasone was not sufficient to induce chondrogenesis. However, addition of BMP2 to TGFbeta and dexamethasone dramatically increased cartilage pellet size and the synthesis of cartilage matrix. The cartilage pellets were also analyzed by electron microscopy and immunohistology. DNA content per pellet decreased during chondrogenesis, indicating the pellet increased its size through the accumulation of newly synthesized extracellular matrix. Sequential chondrogenic gene expression was demonstrated by RT-PCR. Synovium-derived MSCs looked similar to the bone marrow-derived MSCs in their surface epitopes and proliferation potential; however, cartilage pellets from synovium were significantly larger than those from bone marrow in patient-matched comparisons. We demonstrated that the combination of TGFbeta, dexamethasone, and BMP2 was optimal for in vitro chondrogenesis of synovium-derived MSCs and that the synovium-derived MSCs have a greater chondrogenesis potential than bone marrow-derived MSCs.  相似文献   

4.
We investigated chondrogenesis of cell-mediated sox9 gene therapy as a new treatment regimen for cartilage regeneration. pIRES2-EGFP vector containing a full-length mouse sox9 cDNA was transfected into bone marrow-derived mesenchymal stem cells (MSCs) by lipofection and chondrogenic differentiation of these cells was evaluated. In vitro high density micromass culture of these sox9 transfected MSCs demonstrated that a matrix-rich micromass aggregate with EGFP expressing MSCs was positively stained by Alcian blue and type II collagen. Next, sox9 transfected MSCs were loaded into the diffusion chamber and transplanted into athymic mice to analyze in vivo chondrogenesis. A massive tissue formation in about 2mm diameter was visible in the chamber after 4 weeks transplantation. Histological examinations demonstrated that both Alcian blue and type II collagen were positively stained in the extracellular matrix of the mass while type X collagen was not stained. These results indicated that cell-mediated sox9 gene therapy could be a novel strategy for hyaline cartilage damage.  相似文献   

5.
Bone marrow-derived mesenchymal stem cells (MSCs) have strong potential in regeneration of musculoskeletal tissues including cartilage and bone. The microenvironment, comprising of scaffold and soluble factors, plays a pivotal role in determining the efficacy of cartilage tissue regeneration from MSCs. In this study, we investigated the effect of a three-dimensional synthetic-biological composite hydrogel scaffold comprised of poly (ethylene glycol) (PEG) and chondroitin sulfate (CS) on chondrogenesis of MSCs. The cells in CS-based bioactive hydrogels aggregated in a fashion which mimicked the mesenchymal condensation and produced cartilaginous tissues with characteristic morphology and basophilic extracellular matrix production. The aggregation of cells resulted in an enhancement of both chondrogenic gene expressions and cartilage specific matrix production compared to control PEG hydrogels containing no CS-moieties. Moreover, a significant down-regulation of type X collagen expression was observed in PEG/CS hydrogels, indicating that CS inhibits the further differentiation of MSCs into hypertrophic chondrocytes. Overall, this study demonstrates the morphogenetic role of bioactive scaffold-mediated microenvironment on temporal pattern of cartilage specific gene expressions and subsequent matrix production during MSC chondrogenesis.  相似文献   

6.
We investigated the influence of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). During chondrogenic induction, MSCs combined with polyglycolic acid (PGA) were cultured by static culture or microgravity rotating culture and chondrocyte formation was confirmed by toluidine blue staining. Furthermore, the mRNA and protein expressions of a specific cartilage extracellular matrix protein (collagen type II and Aggrecan) were evaluated by real-time RT-PCR and western blot, respectively. Toluidine blue staining indicated the OD values of proteoglycans semi-determination were higher in the microgravity rotating culture group than the static culture group. Following chondrogenic induction, mRNA and proteins of collagen type II and Aggrecan were more significantly expressed in cells of the microgravity rotating culture group compared with the controls. Compared with routine three-dimensional static culture, the microgravity rotating culture system was more effective for the construction of tissue-engineered cartilage in vitro.  相似文献   

7.
8.
9.
During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-beta3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-beta3 and BMP-6 or TGF-beta3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction.  相似文献   

10.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。  相似文献   

11.
BACKGROUND: Chondral defects show lack of proper regeneration whereas osteochondral lesions display limited regeneration capacity. Latter is probably due to immigration of chondroprogenitor cells from the subchondral bone. Known chondroprogenitor cells for cartilage tissues are multi-potent adult marrow stromal or mesenchymal stem cells (MSCs). In vitro chondrogenic differentiation of these precursor cells usually require cues from growth and signalling factors provided in vivo by surrounding tissues and cells. We hypothesise that signalling factors secreted by differentiated cartilage tissue can initiate and maintain chondrogenic differentiation status of MSCs. METHODS: To study such paracrine communication between allogenic rat articular cartilage and rat MSCs embedded in alginate beads a novel coculture system without addition of external growth factors has been established. RESULTS: Impact of cartilage on differentiating MSCs was observed at two different time points. Firstly, sustained expression of Sox9 was observed at an early stage which indicated induction of chondrogenic differentiation. Secondly, late stage repression of collagen X indicated pre-hypertrophic arrest of differentiation. In the culture supernatant we have identified vascular endothelial growth factor alpha (VEGF-164 alpha), matrix metalloproteinase (MMP) -13 and tissue inhibitors of MMPs (TIMP-1 and TIMP-2) which could be traced back either to the cartilage explant or to the MSCs under the influence of cartilage. CONCLUSION: The identified factors might be involved in regulation of collagen X gene and protein expression and therefore, may have an impact on the control and regulation of MSCs differentiation.  相似文献   

12.
Transglutaminase 2 (TG2) was used to attach biologically-active BMP2 to collagen type I-coated poly-l-lactic acid (PLLA) nanofibrous scaffolds. Irreversibly cross-linked BMP2 retained its activity and induced Smad-dependent gene expression in cells seeded on PLLA–BMP2 scaffolds. These modified scaffolds promote osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) cultured in low-serum and growth factor free medium and support deposition of the calcified matrix and induction of the molecular osteogenic markers Runx2, osteopontin, osteonectin and bone sialoprotein. Importantly, the PLLA–BMP2 scaffolds did not support chondrogenic differentiation in hBMSCs as there was no expression of chondrogenic markers aggrecan, Sox 9, and collagen type II, and no deposition of cartilaginous glycosaminoglycan-rich matrix. Thus, TG2-mediated cross-linking of BMP2 to a scaffold is a novel approach to induce osteoblast-specific programming of hBMSCs in a spatially controlled manner.  相似文献   

13.
14.
Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.  相似文献   

15.
Utilizing ATDC5 murine chondrogenic cells and human articular chondrocytes, this study sought to develop facile, reproducible three-dimensional models of cartilage generation with the application of tissue engineering strategies, involving biodegradable poly(glycolic acid) scaffolds and rotating wall bioreactors, and micromass pellet cultures. Chondrogenic differentiation, assessed by histology, immunohistochemistry, and gene expression analysis, in ATDC5 and articular chondrocyte pellets was evident by the presence of distinct chondrocytes, expressing Sox-9, aggrecan, and type II collagen, in lacunae embedded in a cartilaginous matrix of type II collagen and proteoglycans. Tissue engineered explants of ATDC5 cells were reminiscent of cartilaginous structures composed of numerous chondrocytes, staining for typical chondrocytic proteins, in lacunae embedded in a matrix of type II collagen and proteoglycans. In comparison, articular chondrocyte explants exhibited areas of Sox-9, aggrecan, and type II collagen-expressing cells growing on fleece, and discrete islands of chondrocytic cells embedded in a cartilaginous matrix.  相似文献   

16.
17.
We previously compared mesenchymal stem cells (MSCs) from a variety of mesenchymal tissues and demonstrated that synovium-MSCs had the best expansion and chondrogenic ability in vitro in humans and rats. In this study, we compared the in vivo chondrogenic potential of rabbit MSCs. We also examined other parameters to clarify suitable conditions for in vitro and in vivo cartilage formation. MSCs were isolated from bone marrow, synovium, adipose tissue, and muscle of adult rabbits. Proliferation potential and in vitro chondrogenic potential were compared. Toxicity of the tracer DiI for in vitro chondrogenesis was also examined. MSCs from each tissue were embedded in collagen gel and transplanted into full thickness cartilage defects of rabbits. Cartilage matrix production was compared histologically. The effects of cell density and periosteal patch on the in vivo chondrogenic potential of synovium-MSCs were also examined. Synovium- and muscle-MSCs had a higher proliferation potential than other cells. Pellets from synovium- and bone-marrow-MSCs showed abundant cartilage matrix. DiI had no significant influence on in vitro cartilage formation. After transplantation into cartilage defects, synovium- and bone-marrow-MSCs produced much more cartilage matrix than other cells. When synovium-MSCs were transplanted at a higher cell density and with a periosteal patch, more abundant cartilage matrix was observed. Thus, synovium- and bone-marrow-MSCs had greater in vivo chondrogenic potential than adipose- and muscle-MSCs, but synovium-MSCs had the advantage of a greater proliferation potential. Higher cell density and a periosteum patch were needed to obtain a high production of cartilage matrix by synovium-MSCs.  相似文献   

18.
Regulation of mesenchymal stem cell and chondrocyte differentiation by MIA   总被引:8,自引:0,他引:8  
Melanoma inhibitory activity (MIA), also referred to as cartilage-derived retinoic acid-sensitive protein (CD-RAP), an 11-kDa secreted protein, is mainly expressed in cartilaginous tissue during embryogenesis and adulthood. Currently, the function of MIA in cartilage tissue is not understood. Here, we describe that MIA acts as a chemotactic factor on the mesenchymal stem cell line C3H10T1/2, stimulating cell migration significantly at concentrations from 0.24 to 240 ng/ml, while inhibiting cell migration at higher doses of 2.4 microg/ml. When analyzing the role of MIA during differentiation processes, we show that MIA by itself is not capable to induce the differentiation of murine or human mesenchymal stem cells. However, MIA influences the action of bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta 3 during mesenchymal stem cell differentiation, supporting the chondrogenic phenotype while inhibiting osteogenic differentiation. Quantitative RT-PCR analysis revealed the up-regulation of the cartilage markers MIA, collagen type II and aggrecan in human mesenchymal stem cell (HMSC) cultures differentiated in the presence of MIA and TGF-beta 3 or BMP-2 when compared to HMSC cultures differentiated in the presence of TGF-beta 3 or BMP-2 alone. Further, MIA down-regulates gene expression of osteopontin and osteocalcin in BMP-2 treated HMSC cultures inhibiting the osteogenic potential of BMP-2. In the case of human primary chondrocytes MIA stimulates extracellular matrix deposition, increasing the glycosaminoglycan content. Therefore, we postulate that MIA is an important regulator during chondrogenic differentiation and maintenance of cartilage.  相似文献   

19.
This study investigated the involvement of CNP-3, chick homologue for human C-type natriuretic peptide (CNP), in TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells (MSCs). Chondrogenic differentiation of MSCs in pellet cultures was induced by TGF-β1. Chondrogenic differentiation and glycosaminoglycan synthesis were analyzed on the basis of basic histology, collagen type II expression, and Alcian blue staining. Antibodies against CNP and NPR-B were used to block their function during these processes. Results revealed that expression of CNP-3 and NPR-B in MSCs were regulated by TGF-β1 in monolayer cultures at mRNA level. In pellet cultures of MSCs, TGF-β1 successfully induced chondrogenic differentiation and glycosaminoglycan synthesis. Addition of CNP into the TGF-β1 supplemented chondrogenic differentiation medium further induced the glycosaminoglycan synthesis and hypertrophy of differentiated chondrocytes in these pellets. Pellets induced with TGF-β1 and treated with antibodies against CNP and NPR-B, did show collagen type II expression, however, Alcian blue staining showing glycosaminoglycan synthesis was significantly suppressed. In conclusion, CNP-3/NPR-B signaling may strongly be involved in synthesis of glycosaminoglycans of the chondrogenic matrix and hypertrophy of differentiated chondrocytes during TGF-β1 induced chondrogenic differentiation of MSCs.  相似文献   

20.
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml) or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels. Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号