首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apple and cherry rootstocks were planted into land on which apple trees had previously been grown and which pot tests had shown to be subject to apple replant disease. Prior to planting the land was either left unfumigated or zones of progressively increasing area (0.052 m2, 0.839 m3, 3.356 m2) centred on the proposed planting holes were fumigated with chloropicrin. Fumigation greatly increased the growth of the apple rootstocks but not of the cherry rootstocks. In the first year after planting the effects of the two larger fumigated areas were identical but in later years apple rootstock growth was directly related to the size of the fumigated area. This indicated that the replant disease does not simply affect tree establishment as was previously thought to be the case. The implications of this are discussed.  相似文献   

2.
环渤海湾地区连作苹果园土壤中酚酸类物质变化   总被引:11,自引:1,他引:10  
分析了山东昌邑、栖霞、蓬莱,辽宁大连、抚宁、绥远,河北昌黎、青县等地苹果园连作土壤中酚酸物质的组成和含量,结果表明:连作障碍发生的苹果园土壤中酚酸类物质的组成和含量在不同地区、不同土层厚度间存在显著差异。苹果园土壤中酚酸类物质的含量从春季到秋季随时间的延长逐渐减少,但过程缓慢。且非连作园土壤中酚酸类物质含量显著少于连作土。连作土壤中酚酸物质的组成和含量在不同季节间差异显著,尤其春季土壤中酚酸物质的种类与夏季和秋季显著不同。这可能是因为植物在不同季节分泌的酚酸类物质种类和含量有差别.不同土层中酚酸物质的分布因季节不同而有显著差异。夏季土壤中酚酸物质主要分布在浅层土壤中,而秋季则主要分布在深层土壤中。这可能是由于浇水等果园管理措施和自然降水对土壤中的酚酸物质产生的淋溶作用,使得大量的酚酸物质向深层土壤运动,最终造成了秋季果园连作土中随土层加深而酚酸物质含量增加的现象。不同地区苹果园连作土中,对羟基苯甲酸、(+)-儿茶素、咖啡酸、阿魏酸含量与非连作土无显著差异,而焦性没食子酸、绿原酸和根皮苷显著高于非连作土。焦性没食子酸、绿原酸和根皮苷可能是引起山东、辽宁、河北地区苹果园连作障碍的关键酚酸物质。  相似文献   

3.
Apple replant disease (ARD) is a soil-disease syndrome of complex etiology that affects apple tree roots in replanted orchards, resulting in stunted tree growth and reduced yields. To investigate whether different groundcover management systems (GMSs) influence subsequent ARD severity, we grew apple seedlings in an outdoor nursery in pots containing orchard soil from field plots where four GMSs had been maintained for 14 years in an orchard near Ithaca, NY, USA. The GMS treatments were: (1) pre-emergence herbicide (Pre-H), bare soil strips maintained by applying tank-mixed glyphosate, norflurazon and diuron herbicides annually; (2) post-emergence herbicide (Post-H), sparse weed cover maintained by applying glyphosate in May and July each year; (3) mowed sod grass (Mowed Sod); and (4) bark mulch (Mulch). Soils were also sampled from the grass drive lane maintained between the trees in the orchard (Grass Lane). Sampled soils (Orchard soil) were either pasteurized or left untreated, placed into 4-L pots, and planted with one apple seedling per pot. After 3 months of growth, soil (Bioassay soil) and apple tree roots (Bioassay roots) were sampled from each pot and microbial populations colonizing samples were characterized. Seedling growth was reduced in soils sampled from all four GMS treatments compared to the Grass Lane soils. Among the GMS treatments, seedling biomass was greater in Pre-H than in the Post-H soil. Soil microbial communities and nutrient availability differed among all four GMS treatments and the Grass Lane. Root-lesion (Pratylenchus sp.) nematode populations were higher in the Mowed Sod than in the other GMS treatments. Soil bacterial and fungal community composition was assessed in Orchard and Bioassay soils and Bioassay roots with a DNA fingerprinting method (T-RFLP). Redundancy analysis indicated that soils sampled from the different GMS treatments differentially influenced seedling biomass. A clone library of 267 soil bacteria was developed from sampled Orchard soils and Bioassay roots. These communities were dominated by Acidobacteria (25% of sequences), Actinobacteria (19%), δ-Proteobacteria (12%), β-Proteobacteria (10%), and these ratios differed among the GMS soils. Members of the family Comamonadaceae were detected only in tree-row soil, not in the Grass Lanes. The dominant sequences among 145 cloned fungi associated with apple seedling roots were Fusarium oxysporum (16% of sequences), an uncultured soil fungus submitted under DQ420986 (12%), and Rhodotorula mucilaginosa (9%). In a redundancy analysis, factors including fungal and oomycete community compositions, soil respiration rates, population sizes of culturable bacteria and fungi, soil organic matter content, and nutrient availability, were not significant predictors of apple seedling biomass in these soils. Different GMS treatments used by apple growers may influence subsequent ARD severity in replanted trees, but edaphic factors commonly associated with soil fertility may not reliably predict tree-root health and successful establishment of replanted orchards.  相似文献   

4.
The aim of this study was to examine rhizosphere fungal community development in apple replant soil and a new planting soil in Beijing through a potted experiment with the apomictic triploid Pingyitiancha rootstock using the Illumina Miseq method. Steam sterilization significantly enhanced seedling growth in replant soil, while root segment addition did not enhance replant disease symptoms. The bulk soil of the replant site (ReSoil) and the new soil of the planting site (NewSoil) were sampled prior to nursery planting, and rhizosphere soils were r Qinping esampled after one growing season as RePlant and NewPlant, respectively. Approximately 48.3, 47.9, 59.8 and 68.8% of the operational taxonomic units (OTUs) were classified as Ascomycota and Basidiomycota in the community of ReSoil, New Soil, RePlant and NewPlant, respectively. Shannon indices suggested that planting apple nurseries increased the fungal diversity of rhizosphere soil in both soils. Apple replant disorder (ARD) was highly associated with an unbalanced microbial ecosystem with more saprophytic and pathogenic fungi, but less species known to produce antimicrobial metabolites, while Rhizopus, Pyrenochaeta and Eurotium were identified as the key factors in ARD.  相似文献   

5.
The hypothesis that Thielaviopsis basicola might be the causal agent of the specific replant disorders of cherry and plum was tested in experiments with pot-grown trees and by observations on the distribution of the pathogen. The results obtained with certain strains of T. basicola simulated and were consistent with all features known to characterize the specific replant disorders, viz. inter- and intra-generic specificity of effect; host symptoms; establishment, immobility and persistence of the causal agent in soil; normal growth of affected trees after transfer to ‘non-replant’ soil; limited influence of soil type on the incidence of the disorder. T. basicola was therefore considered to be the probable causal agent of the specific replant diseases of certain Prunus species. The etiology of these diseases is discussed. T. basicola was neither pathogenic to apple nor associated with the growth of apple. The apparently closely similar specific replant disorder of Malus is therefore considered to be causally distinct from those of cherry and plum.  相似文献   

6.
Impact of fumigants on soil microbial communities.   总被引:12,自引:0,他引:12  
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

7.
Impact of Fumigants on Soil Microbial Communities   总被引:12,自引:1,他引:11       下载免费PDF全文
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

8.
The growth of fungi causing apple replant disease (ARD) was inhibited by the addition of N and P to the growing medium. The population of bacteria antagonistic to ARD-causing fungi was significantly increased in the growing medium supplemented with N 400 P 400 mg/l or greater. The application of nitrogen alone or in combination with phosphorus to soil infested with fungi or bacteria that cause apple replant disease significantly increased seedling height. The addition of P alone to these infested soils did not have any effect on seedling height. Significant increases in seedling height occurred with N applications when seedlings were grown in soil to which bacteria that are antagonistic to fungi causing ARD had been added. These results suggest that the application of N, with or without P, to apple replant soils may suppress the growth of ARD-causing fungi or bacteria and promote the growth of antagonistic bacteria.  相似文献   

9.
Apple replant disease (ARD) is a complex soilborne disease syndrome that often causes problems when renovating old orchard sites. Soil fumigants sometimes control ARD, but biological and cultural alternatives are needed. In this study the growth of two widely used clonal apple (Malus domestica) rootstocks (M7 and M26) were compared to three new rootstocks from the Cornell-Geneva series (CG16, CG30 and CG210 (a.k.a. CG6210)) in an orchard site with a history of ARD, in Ithaca, NY. Trees were planted in two distinguishable positions – the previous tree rows versus the old inter-row grass lanes. Additionally, we compared the effects of compost amendment and fumigation with dichloropropene plus chloropicrin on tree growth on each replant rootstock. Rhizosphere bacteria and actinobacteria were assessed using PCR-DGGE for the rootstocks M7, M26, CG30 and CG210. Tree growth on the rootstocks M7, M26 and CG16 was suppressed in the old tree rows relative to grass lanes, while trees on CG30 and CG210 rootstocks grew equally well in both positions. The species composition of rhizosphere bacteria and actinobacteria differed significantly between the planting positions and between the rootstocks M7 and M26 compared to CG30 and CG210. In contrast, the preplant compost or fumigation soil treatments had no effect on tree growth and little impact on rhizosphere bacterial community composition. Abbreviations: ARD – apple replant disease; DGGE – denaturing gradient gel electrophoresis; PCR – polymerase chain reaction.  相似文献   

10.
A technique based on progressive fumigation was used to reduce soil microbial biodiversity, and the effects of such reductions upon the stability of key soil processes were measured. Mineral soil samples from a grassland were fumigated with chloroform for up to 24 h and then incubated for 5 months to allow recolonisation by surviving organisms. The diversity of cultivable and non‐cultivable bacteria, protozoa and nematodes was progressively reduced by increasing fumigation times, as was the number of trophic groups, phyla within trophic groups, and taxa within phyla. Total microbial biomass was similar within fumigated soils, but lower than for unfumigated soil. There was no direct relationship between biodiversity and function. Some broad‐scale functional parameters increased as biodiversity decreased, e.g. thymidine incorporation, growth on added nutrients, and the decomposition rate of plant residues. Other more specific parameters decreased as biodiversity decreased, e.g. nitrification, denitrification and methane oxidation. Thus specific functional parameters may be a more sensitive indicator of environmental change than general parameters. Although fumigation reduced soil microbial biodiversity, there was evidence to suggest that it selected for organisms with particular physiological characteristics. The consequences of this for interpreting biodiversity – function relationships are discussed. The stability of the resulting communities to perturbation was further examined by imposing a transient (brief heating to 40°C) or a persistent (addition of CuSO4) stress. Decomposition of grass residues was determined on three occasions after such perturbations. The soils clearly demonstrated resilience to the transient stress; decomposition rates were initially depressed by the stress and recovered over time. Resilience was reduced in the soils with decreasing biodiversity. Soils were not resilient to the persistent stress, there was no recovery in decomposition rate over time, but the soils with the highest biodiversity were more resistant to the stress than soils with impaired biodiversity. The study of functional stability under applied perturbation is a powerful means of examining the effects of biodiversity.  相似文献   

11.
The effects of fumigating field soils before replanting apple are frequently predicted from bioassays where apple seedlings are grown in pots, some containing untreated soil and the others containing chloropicrin-fumigated soil. The results from 418 such bioassays made during eight years are discussed with reference to the effects of certain physical and chemical soil features. Soil phosphorus (P) content and pH had large effects on growth in fumigated (but not untreated) soils; they therefore had large effects on the growth response to soil fumigation. There were no indications of important effects due to soil content of potassium or magnesium or to soil texture. In fumigated soils, the height of seedlings was generally greater, the greater the soil P content, but in untreated soils it was mostly independent of P (range 1 – 156 mg P litre-1soil). The differing effects of native P on growth in untreated or fumigated soils were attributed respectively to the presence and absence of vesicular-arbuscular mycorrhizas: their absence in fumigated soils was considered (for apple) to be an artefact in the seedling bioassay. The results for untreated soils indicated that the apple mycorrhizal system was very efficient in retrieving P when there was little available. Growth responses to soil fumigation were usually greater in acidic than in alkaline soils for any given level of P. When soils were P-amended before testing, the effects of native P and pH virtually disappeared and the proportion of orchard soils with economically significant growth responses increased from 39% to 67%.  相似文献   

12.
环渤海湾苹果产区老果园与连作果园土壤线虫群落特征   总被引:6,自引:0,他引:6  
杨树泉  沈向  毛志泉  尹承苗  王峰  王青青 《生态学报》2010,30(16):4445-4451
应用类群多样性、类群丰富度、个体密度和功能类群指数等群落参数,于2009年5-10月分3次对环渤海湾苹果栽植区老果园不同位置和连作果园取样研究了土壤线虫群落特征。结果表明:苹果连作对果园土壤生物环境具有明显的恶化作用,连作果园土壤环境条件恶劣;对功能类群指数的统计表明,苹果连作明显改变了果园土壤中植物寄生性线虫r-选择和k-选择的比例,与自由生活线虫比较,连作对植物寄生线虫影响更明显;连作提高了果园的土壤线虫PPI/MI,说明连作对果园土壤健康的扰动最大;土壤不同食性线虫数量统计结果显示,环渤海湾苹果栽植区植食性线虫数量未达线虫伤害阈值,线虫不是引起环渤海湾地区苹果连作障碍的主要原因。  相似文献   

13.
A laboratory study was made of re-invasion of soils fumigated in closed containers at rates of 3 ml./sq.ft. 10 in. deep with chloropicrin, methyl bromide and a 67:33 mixture of the two materials (MBC–33), using the dilution plate method of determination. Counts after aeration, 3 weeks later, showed that all three fumigants eliminated practically all fungi. Chloropicrin and MBC–33 also killed almost all bacteria and actinomycetes, whereas fumigation with methyl bromide markedly increased numbers of bacteria without materially altering numbers of actinomycetes. Subsequently, in soils fumigated with chloropicrin or MBC–33, fungi recolonized rapidly, but up to 93 % of the colonies isolated were Trichoderma viride. Increase of fungi in soils fumigated with methyl bromide was slower and Penicillium spp. predominated. Bacteria at first declined in numbers, then increased rapidly in soils fumigated with all three materials. In soils fumigated with methyl bromide, actinomycetes, usually considered to include good antagonists, increased but did not exploit their initial advantage over fungi. In soils fumigated with chloropicrin and MBC–33 actinomycetes did not recolonize in appreciable numbers. The greatest variety of fungous genera occurred in isolates from rhizo-spheres of red beet, but the greatest numbers of colonies of both fungi and bacteria were isolated from rhizospheres of pea and pumpkin. None of the crops tested greatly stimulated recolonization by actinomycetes. Compared with the drastic changes brought about by fumigants the influence of seed and root exudates on either the magnitude or the composition of re-invading micro-organisms was slight.  相似文献   

14.

Key message

Gene expression studies in roots of apple replant disease affected plants suggested defense reactions towards biotic stress to occur which did not lead to adequate responses to the biotic stressors.

Abstract

Apple replant disease (ARD) leads to growth inhibition and fruit yield reduction in replanted populations and results in economic losses for tree nurseries and fruit producers. The etiology is not well understood on a molecular level and causal agents show a great diversity indicating that no definitive cause, which applies to the majority of cases, has been found out yet. Hence, it is pivotal to gain a better understanding of the molecular and physiological reactions of the plant when affected by ARD and later to overcome the disease, for example by developing tolerant rootstocks. For the first time, gene expression was investigated in roots of ARD affected plants employing massive analysis of cDNA ends (MACE) and RT-qPCR. In reaction to ARD, genes in secondary metabolite production as well as plant defense, regulatory and signaling genes were upregulated whereas for several genes involved in primary metabolism lower expression was detected. For internal verification of MACE data, candidate genes were tested via RT-qPCR and a strong positive correlation between both datasets was observed. Comparison of apple ‘M26’ roots cultivated in ARD soil or γ-irradiated ARD soil suggests that typical defense reactions towards biotic stress take place in ARD affected plants but they did not allow responding to the biotic stressors attack adequately, leading to the observed growth depressions in ARD variants.
  相似文献   

15.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

16.
Little bluestem grass Schizachyrium scoparium ([Michx.] Nash) plants were grown under field conditions for 2 years in soils fumigated with methyl bromide and chloropicrin, or in unfumigated soil, and treated with supplemental inorganic nutrients (bases calcium and magnesium) phosphorus, nitrogen, and potassium. Most differences in measured plant responses were due to interactions between fumigation and nutrient treatments. These included biomass production, root mass per unit length (μg/cm), root lengths, flowering culm production, percent colonization, colonized root length, and spore production in rhizosphere soil. Plants generally responded to mycorrhizal fungal colonization by reducing total root length and producing thicker roots. Treatment of plants with bases appeared to profoundly affect the mycorrhizal association by reducing sporulation of vesicular-arbuscular mycorrhizal fungi and increasing colonization. When fumigated or unfumigated soils were considered separately, base-treated plants produced more biomass than other treatments. Base-treated plants grown on unfumigated soil had more flowering culms and longer colonized root lengths than all other plants. Percent colonization by mycorrhizal fungi and colonized root length were positively correlated with phosphorus/nitrogen ratios, but the ratio was not correlated with plant biomass production. This suggests that phosphorus is not a limiting nutrient in our soil and investment in a mycorrhizal association may not result in enhanced plant growth. The base-nutrient effects may indicate a need to reevaluate earlier studies of macro nutrient effects that did not take into account the role played by calcium and magnesium in assessing fungus-host plant interactions.  相似文献   

17.
Apple replant disease (ARD) is a soil-borne disease complex that affects young apple trees in replanted orchards, resulting in stunted growth and reduced yields. Newly developed rootstock genotypes with tolerance to ARD may help to control this disease. We determined the effects of rootstock genotype rotations during orchard renovation, by investigating root-zone soil microbial consortia and the relative severity of ARD on seven rootstock genotypes (M.9, M.26, G.30, G.41, G.65, G.935, and CG.6210) planted in soil where trees on four of those same rootstocks (M.9, M.26, G.30 and CG.6210) had grown for the previous 15 years. Rootstock genotyping indicated that genetic distances among rootstocks were loosely correlated with their differential responses to ARD. Root-zone fungal and bacterial community composition, assessed by DNA fingerprinting (T-RFLP), differed between M.26 and CG.6210. Soil bacterial communities were influenced most by which rootstock had grown in the soil previously, while fungal communities were influenced more by the current replanted rootstock. In a clone library of bacteria from M.26 and CG.6210 root-zone soil, β-Proteobacteria was the most abundant phylum (25% of sequences). Sequences representing the Burkholderia cepacia complex were obtained only from CG.6210 soil. Rootstock genotypes that were grown in the orchard soil previously affected subsequent ARD severity, but replanting with the same or closely related rootstocks did not necessarily exacerbate this disease problem. Our results suggest that genotype-specific interactions with soil microbial consortia are linked with apple rootstock tolerance or susceptibility to ARD.  相似文献   

18.
棉隆对苹果连作土壤微生物及平邑甜茶幼苗生长的影响   总被引:6,自引:0,他引:6  
以生产上常用苹果砧木——平邑甜茶为试材,盆栽条件下研究了棉隆微粒剂对苹果连作土壤微生物及平邑甜茶幼苗生长的影响。结果表明:与重茬(对照CK)相比,棉隆处理极显著(P0.01)降低了连作土壤中真菌数量,降幅达58.8%,细菌和放线菌数量分别显著(P0.05)降低15.3%、8.5%,细菌/真菌增加108.8%,放线菌/真菌增加124.2%;棉隆使连作条件下平邑甜茶单株幼苗根系长度、根表面积、根体积和根系活力分别提高421.4%、426.5%、171.7%、48.8%。平邑甜茶植株叶面积以及叶片中叶绿素a、b含量、净光合速率均极显著提高,分别增加162.6%、14.9%、15.0%、24.0%,叶片同化能力增强;植株长势增强,株高和地径均极显著提高,植株地上干鲜重和地下干鲜重也得到了极显著性增加,最高增加幅度达2.2倍。综上,棉隆处理后苹果连作土壤中微生物数量降低,而细菌与真菌比值、放线菌与真菌比值增加,平邑甜茶幼苗植株长势增强,棉隆可有效减轻苹果连作障碍发生。  相似文献   

19.
Several lines of circumstantial evidence collectively indicated that poor early growth of apple (‘replant disease’) might be associated with the effects of soil-borne pythiaceous fungi. This hypothesis was supported by pathogenicity tests. All isolates tested of P. sylvaticum and certain isolates of seven other Pythium spp. significantly reduced the growth of apple seedlings. The growth reductions caused by certain Pythium isolates were of comparable magnitude to the growth increases occurring after chloropicrin-fumigation of apple orchard soils. The Pythium isolates most virulent to apple were of low virulence to a clonal cherry rootstock. Reappraisal of the nature of the disease as a non-specific soil malaise is consistent with established features of the pathology of Pythium spp. The disease, however, is an ill-defined ‘poor growth phenomenon’ with no diagnostic symptoms and conclusive evidence that Pythium spp. are widely causal is likely to be elusive.  相似文献   

20.
Inoculation of apple seedlings with the mycorrhizal fungus Glomus mosseae significantly increased their growth in apple replant disease soil that was neither pasteurized nor fertilized with monoammonium phosphate. The application of Enterobacter aerogenes and peat suppressed the stunting effect observed in apple replant disease soil. These results suggest the potential of using G. mosseae alone or a E.aerogenes and peat combination for the control of apple replant disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号