首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Enzymes and regulatory proteins involved in the cascade control of glutamine synthetase activity of Escherichia coli have been separated from one another and the effects of numerous metabolites on each step in the cascade have been determined. The adenylyl transferase (ATase) -catalyzed adenylylation of glutamine synthetase, which requires the presence of the unmodified form of the regulatory protein PII is enhanced by glutamine and is inhibited by either α-ketoglutarate (α-KG) or the uridylylated form (PII·UMP) of the regulatory protein. PII·UMP and α-KG act synergistically to inhibit this activity. In contrast, the PII·UMP-dependent, ATase-catalyzed deadenylylation of glutamine synthetase requires α-KG and ATP and is inhibited by glutamine or PII and synergistically by glutamine plus PII. The capacity of uridylyl transferase (UTase) to catalyze the uridylylation of PII is dependent on the presence of α-KG and ATP and is inhibited by glutamine. The deuridylylation of PII·UMP by the uridylyl removing enzyme (UR) is enhanced by glutamine but is unaffected by α-KG. However, CMP, UMP, and CoA all inhibit activity at 10?6m. High concentrations of ATase inhibit both UR and UTase activities, presumably by binding the regulatory protein. Of more than 50 substances that alter the activity of at least one enzyme in the cascade, only α-KG and glutamine affect the activity at every step. This accounts for the observation that glutamine synthetase activity in vivo is very sensitive to the intracellular ratio of α-KG to glutamine.  相似文献   

2.
The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture. These results suggest that l-gluDH is the key enzyme in the conversion of α-KG to l-glutamate; therefore, prevention of this step could promote α-KG accumulation. The inactivation of ICL leads the carbon flow to α-KG by blocking the glyoxylate pathway. However, the disruption of gltB did not affect the biosynthesis of α-KG. Our results can be applied in the industrial production of α-KG by using C. glutamicum as producer.  相似文献   

3.
以光滑拟球酵母为研究模型,研究α-酮戊二酸的浓度情况。通过单因素实验得到α-酮戊二酸积累最佳浓度的各单因素条件为:葡萄糖浓度140g/L,NH4Cl浓度5g/L。在碳源(30g/L葡萄糖初始浓度)匮乏条件下加入丙酮酸30g/L,在此条件下丙酮酸转化为α-酮戊二酸的转化率最高达53.7%。以30g/L丙酮酸为唯一碳源时在7L发酵罐中光滑拟球酵母可生成浓度为10.7g/Lα-酮戊二酸,外源丙酮酸的转化率可达66.9%。这一结果表明,T.glabrata具有将丙酮酸转化为α-KG的能力。  相似文献   

4.
It has been known that some Streptomyces species, including the model strain Streptomyces coelicolor, are vulnerable to visible light. Much evidence demonstrated that the phototoxicity induced by visible light is a consequence of the formation of intracellular reactive oxygen species (ROS), which are potentially harmful to cells. In this study, we found that α-ketoglutarate (α-KG) has a protective role against the phototoxicity in S. coelicolor. It could be because that α-KG can detoxify the ROS with the concomitant formation of succinate, which mediates the cells getting into anaerobiosis to produce more NADH and maintain intracellular redox homeostasis, a situation that was demonstrated by overexpressing gdhA in S. coelicolor. This finding, therefore, connects the central metabolites with the bacterial resistance against phototoxicity effect induced by visible light.  相似文献   

5.
The aim was to determine the effects of enhanced availability of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) on ammonia detoxification to glutamine (GLN) and protein metabolism in two types of skeletal muscle under hyperammonemic conditions. Isolated soleus (SOL, slow-twitch) and extensor digitorum longus (EDL, fast-twitch) muscles from the left leg of white rats were incubated in a medium with 1 mM ammonia (NH3 group), BCAAs at four times the concentration of the controls (BCAA group) or high levels of both ammonia and BCAA (NH3 + BCAA group). The muscles from the right leg were incubated in basal medium and served as paired controls. L-[1-14C]leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. We observed decreased protein synthesis and glutamate and α-ketoglutarate (α-KG) levels and increased leucine oxidation, GLN levels, and GLN release into medium in muscles in NH3 group. Increased leucine oxidation, release of branched-chain keto acids and GLN into incubation medium, and protein synthesis in EDL were observed in muscles in the BCAA group. The addition of BCAAs to medium eliminated the adverse effects of ammonia on protein synthesis and adjusted the decrease in α-KG found in the NH3 group. We conclude that (i) high levels of ammonia impair protein synthesis, activate BCAA catabolism, enhance GLN synthesis, and decrease glutamate and α-KG levels and (ii) increased BCAA availability enhances GLN release from muscles and attenuates the adverse effects of ammonia on protein synthesis and decrease in α-KG.  相似文献   

6.
7.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

8.
Y.C. Chia  G.W. Smith  G.J. Lees 《Life sciences》1984,34(25):2443-2452
Homogenates of rat liver transaminate phenylpyruvate (PP), as well as α-ketoglutarate (α-KG), in the presence of L-tyrosine, 3,4-dihydroxyphenylalanine (L-DOPA) or L-tryptophan. Aminotransferase activity with phenylpyruvate and DOPA, but not with tyrosine, was inhibited by excess phenylpyruvate. Tyrosine and DOPA aminotransferase activities with phenylpyruvate were more heat stable than the corresponding activities with α-ketoglutarate. Aminotransferase activities with phenylpyruvate were not significantly induced following intraperitoneal injections of cortisol, glucagon or serotonin, compared with a 3 to 7-fold increase in the aminotransferase activities with α-ketoglutarate. Tyrosine:phenylpyruvate aminotransferase activity rose 40% at night, compared with a 300% increase in tyrosine:α-ketoglutarate aminotransferase activity. The results suggest that aminotransferases catalysing transfers between aromatic keto acids and aromatic amino acids are separate enzymes from those utilizing α-ketoglutarate as the acceptor keto acid.  相似文献   

9.
Ferrario-Méry  S.  Suzuki  A.  Kunz  C.  Valadier  M.H.  Roux  Y.  Hirel  B.  Foyer  C.H. 《Plant and Soil》2000,221(1):67-79
Tobacco (Nicotiana tabacum) plants expressing a partial ferredoxin-dependent glutamine-2-oxoglutarate aminotransferase (Fd-GOGAT) cDNA in the antisense orientation under the control of the 35S promoter, were used to study the metabolism of amino acids, 2-oxoglutarate and ammonium following the transition from CO2 enrichment (where photorespiration is inhibited) to air (where photorespiration is a major process of ammonium production in leaves). The leaves of the lowest Fd-GOGAT expressors accumulated more foliar glutamine (Gln) and α-ketoglutarate (α-KG) than the untransformed controls in both growth conditions. Photorespiration-dependent increases in foliar ammonium, glutamine, α-KG and total amino acids were proportional to the decreases in foliar Fd-GOGAT activity. No change in endoprotease activity was observed following transfer to air in the Fd-GOGAT transformants or the untransformed controls which has similar activities over a broad range of pH values. We conclude that several pathways of amino acid biosynthesis are modified when NH3 + and Gln accumulate in leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In addition to complexes in the respiratory chain, few dehydrogenases playing key roles in the physiological metabolism in neurons, are able to generate reactive oxygen species (ROS) in mitochondria. One of them is the Krebs cycle enzyme, α-ketoglutarate dehydrogenase (α-KGDH), which is capable of producing superoxide and hydrogen peroxide by the E3 subunit of the enzyme regulated by changes in the NADH/NAD+ ratio. Mutations in the E3 subunit known to be related to diseases in humans were shown to have increased ROS-forming ability. α-Glycerophosphate dehydrogenase (α-GPDH) located on the outer surface of the inner membrane can also generate ROS, which is stimulated by Ca2+. ROS production by α-GPDH is unique as it does not require Ca2+ uptake and it is observed in respiring as well as damaged, bioenergetically incompetent mitochondria. The possible role of ROS generation by these dehydrogenases in brain pathology is discussed in this review.  相似文献   

11.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue α-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B°-like.  相似文献   

12.
Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.  相似文献   

13.
Evidence accumulating during almost 50 years suggests Na+, K+-ATPase dysfunction in bipolar disorder, a disease treatable with chronic administration of lithium salts, carbamazepine or valproic acid. Three Na+, K+-ATPase α subunits (α1–3) and two β subunits (β1 and β2) are expressed in brain together with the auxiliary protein FXYD7. FXYD7 decreases K+ affinity, and thus contributes to stimulation of the enzyme at elevated extracellular K+ concentrations. Na+, K+-ATPase subtype and FXYD7 genes were determined by RT-PCR in mice co-expressing one fluorescent signal with an astrocytic marker or a different fluorescent signal with a neuronal marker and treated for 14 days with carbamazepine. Following fluorescence-activated cell sorting of neurons and astrocytes it was shown that α2 Expression was upregulated in astrocytes and neurons and α1 selectively in neurons, but α3 was unchanged. β1 was upregulated in astrocytes, but not in neurons. β2 was unaffected in astrocytes and absent in neurons. FXYD7 was downregulated specifically in neurons. According to cited literature data these changes should facilitate K+ uptake in neurons, without compromising preferential uptake in astrocytes at increased extracellular K+ concentrations. This process seems to be important for K+ homeostasis of the cellular level of the brain (Xu et al. Neurochem Res E-pub Dec. 12, 2012).  相似文献   

14.
The findings that the equilibrium uptake of β-alanine decreased with increasing medium osmolarity and preincubation with β-alanine increased uptake of the amino acid indicate that the uptake of β-alanine by rabbit renal brush border membranes represents transport into membrane vesicles. A Na+ electrochemical gradient (extravesicular > intravesicular) stimulated the initial rate of β-alanine uptake about three times and effected a transient accumulation of the amino acid twice the equilibrium value. Stimulation of the uptake was specific for Na+. Gramicidin abolished the overshoot, presumably by dissipating the gradient by accelerating the electrogenic entrance of Na+ into the vesicle via a pathway not coupled to uptake of β-alanine. In K+-loaded vesicle, valinomycin enhanced the Na+ gradient-dependent uptake of β-alanine. These findings indicate that the Na+ gradient-dependent transport of β-alanine is an electrogenic process and suggest that the membrane potential is a determinant of β-analine transport. Uptake of β-aniline, at a given concentration, reflected the sum of contributions from Na+ gradient-dependent and -independent transport systems. The dependent system saturated at 100 μM. The independent system did not saturate. At physiological concentrations the rate of the Na+ gradient-dependent uptake was four times that in the absence of the gradient. The Na+ gradient-dependent rate of β-alanine uptake was strongly inhibited by taurine, suggesting that β-amino acids have a common transport system, α-Amino acids, i.e. l-arginine, l-glutamate, l-proline, and glycine, representing previously reported specific α-amino acid transport systems in the brush border membrane, did not inhibit the uptake of β-alanine. These findings indicate that the brush border membrane has a distinct transport system for β-amino acids.  相似文献   

15.
α-ketoglutarate was found to be a potent inhibitor of glutamine transport and deamidation in mitochondria isolated from rat kidney; physiological concentrations of the ketoacid (~0.3mM) reduced transport and deamidation 45–60 percent. The observed concentration-inhibition relationship between α-ketoglutarate and mitochondrial glutamine transport and deamidation indicated that changes in renal concentration of the ketoacid occurring during conditions associated with an increase in glutamine deamidation (e.g. metabolic acidosis) would have significant effects on glutamine transport and deamidation by renal mitochondria in vivo. The inhibitory effect of α-ketoglutarate was specific; several of the other major organic acids found in renal cells stimulated rather than inhibited mitochondrial glutamine transport.  相似文献   

16.
In this work, dynamics was studied of uptake of p-aminohippurate by basolateral membrane vesicles isolated from rat kidney proximal tubules. The uphill PAH transport into the basolateral membrane vesicles was shown to occur in the presence of α-ketoglutarate and Na+-gradient. Based on mathematical model of symport and antiport cooperation, the mechanism of energy coupling of PAH transport via exchanger with Na+-dicarboxylate symport is discussed. Based on comparison of our own and literature data, the data analysis shows adequacy of the proposed mathematical model to describe the symport and antiport cooperation. This model has been shown to enable estimation of re-orientation probability of the empty anion exchanger (without substrate) from one membrane side to the other.  相似文献   

17.
Fe(II)- and α-ketoglutarate (α-KG)-dependent dioxygenases are a large and diverse superfamily of mononuclear, non-heme enzymes that perform a variety of oxidative transformations typically coupling oxidative decarboxylation of α-KG with hydroxylation of a prime substrate. The biosynthetic gene clusters for several nucleoside antibiotics that contain a modified uridine component, including the lipopeptidyl nucleoside A-90289 from Streptomyces sp. SANK 60405, have recently been reported, revealing a shared open reading frame with sequence similarity to proteins annotated as α-KG:taurine dioxygenases (TauD), a well characterized member of this dioxygenase superfamily. We now provide in vitro data to support the functional assignment of LipL, the putative TauD enzyme from the A-90289 gene cluster, as a non-heme, Fe(II)-dependent α-KG:UMP dioxygenase that produces uridine-5'-aldehyde to initiate the biosynthesis of the modified uridine component of A-90289. The activity of LipL is shown to be dependent on Fe(II), α-KG, and O(2), stimulated by ascorbic acid, and inhibited by several divalent metals. In the absence of the prime substrate UMP, LipL is able to catalyze oxidative decarboxylation of α-KG, although at a significantly reduced rate. The steady-state kinetic parameters using optimized conditions were determined to be K(m)(α-KG) = 7.5 μM, K(m)(UMP) = 14 μM, and k(cat) ≈ 80 min(-1). The discovery of this new activity not only sets the stage to explore the mechanism of LipL and related dioxygenases further but also has critical implications for delineating the biosynthetic pathway of several related nucleoside antibiotics.  相似文献   

18.
We report here on the cloning and functional characterization of the third subtype of amino acid transport system A, designated ATA3 (amino acid transporter A3), from a human liver cell line. This transporter consists of 547 amino acids and is structurally related to the members of the glutamine transporter family. The human ATA3 (hATA3) exhibits 88% identity in amino acid sequence with rat ATA3. The gene coding for hATA3 contains 16 exons and is located on human chromosome 12q13. It is expressed almost exclusively in the liver. hATA3 mediates the transport of neutral amino acids including α-(methylamino)isobutyric acid (MeAIB), the model substrate for system A, in a Na+-coupled manner and the transport of cationic amino acids in a Na+-independent manner. The affinity of hATA3 for cationic amino acids is higher than for neutral amino acids. The transport function of hATA3 is thus similar to that of system y+L. The ability of hATA3 to transport cationic amino acids with high affinity is unique among the members of the glutamine transporter family. hATA1 and hATA2, the other two known members of the system A subfamily, show little affinity toward cationic amino acids. hATA3 also differs from hATA1 and hATA2 in exhibiting low affinity for MeAIB. Since liver does not express any of the previously known high-affinity cationic amino acid transporters, ATA3 is likely to provide the major route for the uptake of arginine in this tissue.  相似文献   

19.
Abstract: Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with α-ketoglutarate to form the branched-chain α-keto acids (BCKAs). The brain is unique in that it expresses two separate branched-chain aminotransferase (BCAT) isoenzymes. One is the common peripheral form [mitochondrial (BCATm)], and the other [cytosolic (BCATc)] is unique to cerebral tissue, placenta, and ovaries. Therefore, attempts were made to define the isoenzymes' spatial distribution and whether they might play separate metabolic roles. Studies were conducted on primary rat brain cell cultures enriched in either astroglia or neurons. The data show that over time BCATm becomes the predominant isoenzyme in astrocyte cultures and that BCATc is prominent in early neuronal cultures. The data also show that gabapentin, a structural analogue of leucine with anticonvulsant properties, is a competitive inhibitor of BCATc but that it does not inhibit BCATm. Metabolic studies indicated that BCAAs promote the efflux of glutamine from astrocytes and that gabapentin can replace leucine as an exchange substrate. Studying astrocyte-enriched cultures in the presence of [U-14C]glutamate we found that BCKAs, but not BCAAs, stimulate glutamate transamination to α-ketoglutarate and thus irreversible decarboxylation of glutamate to pyruvate and lactate, thereby promoting glutamate oxidative breakdown. Oxidation of glutamate appeared to be largely dependent on the presence of an α-keto acid acceptor for transamination in astrocyte cultures and independent of astrocytic glutamate dehydrogenase activity. The data are discussed in terms of a putative BCAA/BCKA shuttle, where BCATs and BCAAs provide the amino group for glutamate synthesis from α-ketoglutarate via BCATm in astrocytes and thereby promote glutamine transfer to neurons, whereas BCATc reaminates the amino acids in neurons for another cycle.  相似文献   

20.
The presence of α-ketoglutarate (α-KG) dehydrogenase complex in the glutamate-producing bacteria was demonstrated for the first time with Brevibacterium flavum. The partially purified enzyme, which was specific to KG and NAD+ with the usual requirements for other co-factors, was labile and stabilized by glycerol, Mg2+, and thiamine pyrophosphate. The enzyme showed an optimum pH of 7.6 and Kms of 80, 86, and 61 μm for KG, NAD+, and CoA, respectively, cis-Aconitate, succinyl-CoA, NADPH, NADH, pyruvate, and oxalacetate strongly inhibited the activity, while it was activated by acetyl-CoA, but not by AMP. Various inorganic and organic salts also inhibited the activity. When cells were cultured in glucose and acetate media, the specific activity of the cell extracts increased markedly and reached to a maximum at the late-logarithmic phase. Then, it decreased to the basal level. The addition of glutamate stimulated the synthesis of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号