首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Lipoate-protein ligase A (LplA) catalyzes the formation of lipoyl-AMP from lipoate and ATP and then transfers the lipoyl moiety to a specific lysine residue on the acyltransferase subunit of alpha-ketoacid dehydrogenase complexes and on H-protein of the glycine cleavage system. The lypoyllysine arm plays a pivotal role in the complexes by shuttling the reaction intermediate and reducing equivalents between the active sites of the components of the complexes. We have determined the X-ray crystal structures of Escherichia coli LplA alone and in a complex with lipoic acid at 2.4 and 2.9 angstroms resolution, respectively. The structure of LplA consists of a large N-terminal domain and a small C-terminal domain. The structure identifies the substrate binding pocket at the interface between the two domains. Lipoic acid is bound in a hydrophobic cavity in the N-terminal domain through hydrophobic interactions and a weak hydrogen bond between carboxyl group of lipoic acid and the Ser-72 or Arg-140 residue of LplA. No large conformational change was observed in the main chain structure upon the binding of lipoic acid.  相似文献   

2.
The effects of lipoic acid on intensity of free radical reactions, citrate content, and aconitate hydratase during myocardial ischemia have been investigated. Treatment with lipoic acid normalized biochemiluminescence parameters and citrate level, which were increased in the myocardial pathology. Treatment with lipoic acid also increased specific activity of aconitate hydratase, which was decreased in myocardium and blood of animals with myocardial ischemia. Administration of lipoic acid decreased DNA fragmentation observed during myocardial ischemia. The data suggest that lipoic acid can be effectively used as a cardioprotector preventing the development of free radical oxidation during myocardial ischemia.  相似文献   

3.
A method has been developed for the gas chromatographic analysis of lipoic acid in biological samples. The lipoic acid is released from the samples by acid hydrolysis in the presence of the internal standards 1,2-dithiolane-3-butyric acid and/or 1,2-dithiolane-3-caproic acid. After hydrolysis, the lipoic acid and the internal standards are extracted from the hydrolysate and converted into the S,S-dibenzylmethyl esters. Gas chromatographic analysis of this mixture completely separates each of the homolog derivatives from the lipoic acid derivative and allows for the quantitation of the lipoic acid in the sample. Samples containing more than ~50 ng of lipoic acid can be easily assayed. Results are presented that show that the lipoic acid content of Escherichia coli depends on the carbon source used for its growth.  相似文献   

4.
Morikawa T  Yasuno R  Wada H 《FEBS letters》2001,498(1):16-21
Lipoic acid is a coenzyme essential to the activity of enzymes such as pyruvate dehydrogenase, which play important roles in central metabolism. However, neither the enzymes responsible for biosynthesis nor the biosynthetic event of lipoic acid has been reported in mammalian cells. In this study, a mouse mLIP1 cDNA for lipoic acid synthase has been identified. We have shown that the cDNA encodes a lipoic acid synthase by its ability to complement a mutant of Escherichia coli defective in lipoic acid synthase and that mLIP1 is targeted into the mitochondria. These findings suggest that mammalian cells are able to synthesize lipoic acid in mitochondria.  相似文献   

5.
The analysis of lipoic acid and related compounds, such as its reduced form dihydrolipoic acid, its amide form lipoamide and other analogues, in biological and food samples is important in biochemistry, nutritional and clinical chemistry. This review summarizes the chromatographic methods for the determination of lipoic acid and related compounds, and their applications to various samples such as bacteria, tissues, drugs and food. Gas chromatographic methods with flame ionization detection and flame photometric detection are commonly used for the quantification of lipoic acid present as its protein-bound form, after acid or base hydrolysis of these samples. High-performance liquid chromatographic methods with ultraviolet, fluorescence and electrochemical detection are mainly used for the determination of free lipoic acid and related compounds, such as dihydrolipoic acid, lipoamide and other analogues. Moreover, gas chromatography–mass spectrometry and capillary electrophoresis methods are also developed.  相似文献   

6.
A fast, simple, and a reliable high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method for the assessment of lipoic acid (LA) and dihydrolipoic acid (DHLA) in plasma was developed using naproxen sodium as an internal standard (IS) and validated according to standard guidelines. Extraction of both analytes and IS from plasma (250 μl) was carried out with a single step liquid-liquid extraction applying dichloromethane. The separated organic layer was dried under stream of nitrogen at 40°C and the residue was reconstituted with the mobile phase. Complete separation of both compounds and IS at 30°C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 9 min using acetonitrile: 0.05 M phosphate buffer (pH 2.4 adjusted with phosphoric acid) (52:48, v/v) as a mobile phase pumped at flow rate of 1.5 ml min(-1) using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification for lipoic acid were 500 pg/ml and 3 ng/ml, and for dihydrolipoic acid were 3 ng/ml and 10 ng/ml, respectively. The absolute recoveries of lipoic acid and dihydrolipoic acid determined on three nominal concentrations were in the range of 93.40-97.06, and 93.00-97.10, respectively. Similarly coefficient of variations (% CV) for both intra-day and inter-day were between 0.829 and 3.097% for lipoic acid and between 1.620 and 5.681% for dihydrolipoic acid, respectively. This validated method was applied for the analysis of lipoic acid/dihydrolipoic acid in the plasma of human volunteers and will be used for the quantification of these compounds in patients with oxidative stress induced pathologies.  相似文献   

7.
Lipoic acid is a coenzyme for pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched chain-ketoacid dehydrogenase, and the glycine cleavage system. Lipoic acid is covalently attached through an amide to the ?-amino group of specific lysine residues of these enzymes. Lipoamidase hydrolyzes the amide bond of lipoyl-N-?-lysine. Because of the difficulty in quantitating lipoic acid or lysine released by hydrolysis of lipoyl-N-?-lysine, a sensitive assay of lipoamidase activity was developed based on quantitation of lipoic acid liberated from lipoyl-?-lysine using 2,6-dibromoquinone-4-chlorimide (DBQC). This method involves acidification of the assay mixture with HCl and separation of lipoic acid from lipoyl-N-?-lysine by extraction into ethyl acetate where it can react with DBQC. This method is as sensitive as methods based on the reaction of lipoic acid with dinitrothiobenzoate and requires only a single extraction, but does not require reduction of the disulfide and the color reagent does not need to be prepared daily. Results obtained using this assay to quantitate lipoic acid released from lipoyl-N-p-aminobenzoate correlated excellently with results obtained using the Marshall–Bratton reaction to quantitatep-aminobenzoate. We have detected lipoyl-N-?-lysine hydrolysis activity that is distinct from that of biotinidase and bile salt-stimulated lipase in lymphoblasts from a patient with biotinidase deficiency. This assay can be used to measure lipoyl-N-?-lysine hydrolysis activity in tissues, especially those with little or no biotinidase activity.  相似文献   

8.
A rapid, inexpensive, sensitive and specific HPLC-ECD method for the determination of lipoic acid in human plasma was developed and validated over the linearity range of 0.001–10 μg/ml using naproxen sodium as an internal standard (IS). Extraction of lipoic acid and IS from plasma (250 μl) was carried out with a simple one step liquid–liquid extraction using dichloromethane. Similarly solid-phase extraction was carried out using dichloromethane as extraction solvent. The separated organic layer was dried under the stream of nitrogen at 40 °C and the residue was reconstituted with the mobile phase. Complete separation of both lipoic acid and IS at 30 °C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 6 min using 0.05 M phosphate buffer (pH 2.5 adjusted with phosphoric acid):acetonitrile (50:50, v/v) as a mobile phase pumped at the rate of 1.5 ml/min using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification of lipoic acid were 200 pg/ml and 1 ng/ml, respectively. While on column limit of detection and limit of quantification of lipoic acid were 10 and 50 pg/ml, respectively. The absolute recoveries of lipoic acid with liquid–liquid and solid-phase extraction were 98.43, 95.65, 101.45, and 97.36, 102.73, 100.17% at 0.5, 1 and 5 μg/ml levels, respectively. Coefficient of variations for both intra-day and inter-day were between 0.28 and 4.97%. The method is validated and will be quite suitable for the analysis of lipoic acid in the plasma of human volunteers as well as patients with diabetes and cardiovascular diseases.  相似文献   

9.
A lipoic acid auxotroph of Escherichia coli K-12, strain W1485lip2 (ATCC25645), produced pyruvic acid aerobically from glucose under the lipoic acid-deficient conditions, while the prototrophic parent strain, W1485 (ATCC12435), produced 2-oxoglutaric acid as the main product. The mechanism of the pyruvic acid production by strain W1485lip2 was found to be the impaired oxidative decarboxylation of pyruvic acid caused by the decrease in the activity of pyruvate dehydrogenase complex under the conditions of lipoic acid deficiency. Under the optimum culture conditions using the pH-controlled jar fermentor, 25.5?g/l pyruvic acid was obtained from 50?g/l glucose after the culture for 32–40?h at pH?6.0. The relationship between the pyruvic acid productivity and the pyruvate dehydrogenase complex activity in jar-fermentor culture was discussed.  相似文献   

10.
Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.  相似文献   

11.
Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.  相似文献   

12.
Lipoic acid (1,2-dithiolane-pentanoic acid) is a dithiol which is effective in affording protection against oxidative stress by virtue of its two sulphydryl moieties. It is present in all kinds of eukaryotic and prokaryotic cells. As lipoamide, it functions as a cofactor in the multienzyme complexes that catalyse the oxidative decarboxylation of α-keto acids such as pyruvate, α-ketoglutarate, and branched-chain α-keto acids. The complete enzyme pathway responsible for the de novo synthesis of lipoic acid has not yet been elucidated. Octanoic acid appears to be the precursor for the eight-carbon fatty acid chain, and cysteine the source of sulfur. Lipoic acid is unique, among antioxidants, because it retains powerful antioxidant properties in both its reduced (dihydrolipoic acid) and oxidised (lipoic acid) forms. Both lipoic and dihydrolipoic acids have metal-chelating ability and quench activated oxygen species either in the cytosol or in the hydrophobic domains. Dihydrolipoic acid has more antioxidant properties than lipoic acid, and it plays an important role in the recycling of other oxidised radical scavengers such as glutathione, ascorbate and tocopherol. However, dihydrolipoic acid can also exert pro-oxidant properties both by its iron-reducing ability and by its ability to generate sulfur-containing radicals that can damage proteins. There are few quantitative data on lipoic acid contents in vegetables. It has been found in asparagus, wheat and potatoes, and recently, the presence of both lipoic and dihydrolipoic acids in roots, leaves and in the stroma of wheat has been demonstrated.  相似文献   

13.
Nonalcoholic steatosis is an important hepatic complication of obesity linked to mitochondrial dysfunction and insulin resistance. Furthermore, lipoic acid has been reported to have beneficial effects on mitochondrial function. In this study, we analyzed the potential protective effect of lipoic acid supplementation against the development of nonalcoholic steatosis associated with a long-term high-fat diet feeding and the potential mechanism of this effect. Wistar rats were fed on a standard diet (n=10), a high-fat diet (n=10) and a high-fat diet supplemented with lipoic acid (n=10). A group pair-fed to the latter group (n=6) was also included. Lipoic acid prevented hepatic triglyceride accumulation and liver damage in rats fed a high-fat diet (?68%±11.3% vs. obese group) through the modulation of genes involved in lipogenesis and mitochondrial β-oxidation and by improving insulin sensitivity. Moreover, this molecule showed an inhibitory action on electron transport chain complexes activities (P<.01–P<.001) and adenosine triphosphate synthesis (P<.05), and reduced significantly energy efficiency. By contrast, lipoic acid induced an increase in mitochondrial copy number and in Ucp2 gene expression (P<.001 vs. obese). In summary, this investigation demonstrated the ability of lipoic acid to prevent nonalcoholic steatosis induced by a high-fat intake. Finally, the novelty and importance of this study are the finding of how lipoic acid modulates some of the mitochondrial processes involved in energy homeostasis. The reduction in mitochondrial energy efficiency could also explain, at least in part, the beneficial effects of lipoic acid not only in fatty liver but also in preventing excessive body weight gain.  相似文献   

14.
Porcine heart mitochondrial malate dehydrogenase (L-malate:NAD+ oxidoreductase, EC 1.1.1.37) has been shown to be inhibited by extremely low concentrations of lipoic acid. The actual inhibitor was found to be a high molecular weight substance, which can be separated by gel permeation from the non-inhibitory monomeric form of lipoic acid. This inhibitor has been identified as a polymeric form of lipoic acid.  相似文献   

15.
Two genes, lipA and lipB, involved in lipoic acid biosynthesis or metabolism were characterized by DNA sequence analysis. The translational initiation site of the lipA gene was established, and the lipB gene product was identified as a 25-kDa protein. Overproduction of LipA resulted in the formation of inclusion bodies, from which the protein was readily purified. Cells grown under strictly anaerobic conditions required the lipA and lipB gene products for the synthesis of a functional glycine cleavage system. Mutants carrying a null mutation in the lipB gene retained a partial ability to synthesize lipoic acid and produced low levels of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase activities. The lipA gene product failed to convert protein-bound octanoic acid moieties to lipoic acid moieties in vivo; however, the growth of both lipA and lipB mutants was supported by either 6-thiooctanoic acid or 8-thiooctanoic acid in place of lipoic acid. These data suggest that LipA is required for the insertion of the first sulfur into the octanoic acid backbone. LipB functions downstream of LipA, but its role in lipoic acid metabolism remains unclear.  相似文献   

16.
A selective and sensitive method for the determination of lipoic acid in human plasma samples has been developed. After enzymatic hydrolysis of the sample, the liberated lipoic acid was extracted by a solid-phase cartridge and measured by HPLC using electrochemical detection. The detection limit was 1 ng/ml lipoic acid in plasma. The calibration curve was non-linear in the range 0.01–50 μg/ml but could be described by a power function. The average extraction recoveries were 82.5 and 85.1% at the 25 and 2500 ng/ml levels, respectively. Coefficients of variation for both within-day and day-to-day analysis were between 2.1 and 9.4%. The assay method is sensitive, reproducible and suitable for disposition studies of lipoic acid in humans.  相似文献   

17.
Experiments were performed under several conditions seeking evidence for turnover of protein-bound lipoic acid in Escherichia coli analogous to that described for the 4′-phosphopantetheine moiety of the E. coli acyl carrier protein. Pulse-chase, chase experiments using both low and saturating concentrations of lipoic acid, chase experiments in the presence of chloramphenicol, which prevents incorporation of lipoic acid into the protein-bound form, and chase experiments in cells in which the free pool of lipoic acid was reduced by osmotic shock all failed to demonstrate any turnover of protein-bound lipoic acid.  相似文献   

18.
Reduced glutathione (GSH) delays microsomal lipid peroxidation via the reduction of vitamin E radicals, which is catalyzed by a free radical reductase (Haenen, G.R.M.M. et al. (1987) Arch. Biochem. Biophys. 259, 449-456). Lipoic acid exerts its therapeutic effect in pathologies in which free radicals are involved. We investigated the interplay between lipoic acid and glutathione in microsomal Fe2+ (10 microM)/ascorbate (0.2 mM)-induced lipid peroxidation. Neither reduced nor oxidized lipoic acid (0.5 mM) displayed protection against microsomal lipid peroxidation, measured as thiobarbituric acid-reactive material. Reduced lipoic acid even had a pro-oxidant activity, which is probably due to reduction of Fe3+. Notably, protection against lipid peroxidation was afforded by the combination of oxidized glutathione (GSSG) and reduced lipoic acid. It is shown that this effect can be ascribed completely to reduction of GSSG to GSH by reduced lipoic acid. This may provide a rationale for the therapeutic effectiveness of lipoic acid.  相似文献   

19.
We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers.  相似文献   

20.
A homogeneous enzyme immunoassay for lipoic acid was developed by using an enzyme-ligand conjugate containing only one ligand per enzyme subunit. Theoretical studies have shown that the traditional use of multisubstituted enzyme-ligand conjugates has limited the detection limits and sensitivity obtainable with these assays. The use of conjugates with a smaller number of ligands should allow for improved assays. The pyruvate dehydrogenase complex was chosen for this study because each polypeptide chain of dihydrolipoyl transacetylase contains one lipoic acid as a covalently attached prosthetic group. Thus, the naturally occurring enzyme can be considered as an enzyme-lipoic acid conjugate. Anti-lipoic acid antibodies were developed in New Zealand White rabbits to be used as the analyte-specific binders. Association and binder dilution curves were prepared in order to optimize the reagent concentrations and the analytical conditions. Unexpected inhibition by free lipoic acid resulted in a biphasic dose-response curve with a detection limit of 5 x 10(-6) M lipoic acid. This technique has several advantages over previous electrochemical and chromatographic techniques for lipoic acid determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号