首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Lrp5/6 co-receptor is known to play a role in bone formation and lipid metabolism. This gene encodes a member of the low-density lipoprotein (LDL) receptor gene family. This study tests the hypothesis that Lrp5/6 is necessary for the development of valve calcification in experimental hypercholesterolemia. Experimental hypercholesterolemia mouse models were tested: Lrp5(-/-) /ApoE(-/-):Lrp5(-/-) /ApoE(-/-) mice (n = 180). Group I (n = 60) normal diet, Group II (n = 60) 0.25% chol diet (w/w), and Group III (n = 60) 0.25% (w/w) chol diet + atorv for the development of calcification by MicroCT and Synchrotron MicroCT Scan and by Masson trichrome stain. Finally gene expression for Lrp5, Lrp6, and Runx2 PCR was performed to evaluate the expression in the control and the cholesterol valves. The ApoE(-/-) cholesterol treated mice developed calcification and increase in Lrp5, Runx2 (P < 0.05) as compared to control. The Lrp5(-/-) mice developed no calcification by MicroCT and Synchrotron and positive gene expression for Lrp5/6 or Runx2. The double knockout ApoE(-/-):Lrp5(-/-) developed mild mineralization in the cholesterol treated valves with an increase in Lrp6 and Runx2 expression(P < 0.05). There was no mineralization in the right sided hearts valves. In conclusion Lrp5/6 is necessary for calcification in the aortic valve in the presence of experimental hypercholesterolemia. These data demonstrate the first mouse genetic evidence for the LDL-Density-Pressure theory in cardiac valves.  相似文献   

2.
We have previously demonstrated that Lrp5/6/β-catenin plays an important role in valve calcification with a specific osteogenic phenotype defined by increased bone mineral content and overall valve thickening. Recent studies indicate that TIEG1 may be involved in mediating the Wnt signaling pathway in bone, which is known to play critical roles in osteoblast differentiation and bone mineralization. Therefore, we sought to test the role of TIEG1 in mediating Wnt signaling, in an established model of hypercholesterolemic valve disease. Our previous model treated null mice with cholesterol diets: Lrp5 −/−/ApoE −/− mice versus wild-type control (n = 180). Group I (n = 60) normal diet, Group II (n = 60) 0.25% chol diet (w/w), and Group III (n = 60) 0.25% (w/w) chol diet + atorv was tested for gene expression for TIEG1, Lrp6, and Runx2. Real-time polymerase chain reaction confirmed that there is upregulation of the gene expression for TIEG1 and Runx2 in the hypercholesterolemic double knockout and single knockout valves as compared with controls with a mild increase in Lrp6. To confirm the mechanism, coexpression of β-catenin, TIEG1, and LEF1 in valve cells in vitro, led to the coactivation of the TOPFLASH reporter, which was further confirmed by the observation that TIEG1 and β-catenin colocalize with one another in the nucleus of valvular interstitial cells (VICs) following stimulation with transforming growth factor-β treatment, an established activator of TIEG1. Taken together, these data implicate an important role for TIEG1 in mediating valve osteogenesis.  相似文献   

3.
Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5−/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5−/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5−/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5−/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.  相似文献   

4.
Calcific aortic valve disease (CAVD) results in aortic valve stenosis and is one of the most common cardiac diseases in both Western and developing countries. The burden of this disease is expected to increase rapidly in the future, but there are still no relevant pharmacological therapies available and aortic valve replacement remains the sole definite therapy. This review presents an overview of the most common causes of CAVD, followed by current debates and trials related to the onset and progression of this disease. Several differences and similarities between the different causes of CAVD are presented. Additionally, stages of CAVD are compared with stages in atherosclerosis. Finally, future directions for research on CAVD will be discussed.  相似文献   

5.
目的:探究小干扰RNA(small interference RNA,siRNA)介导的骨形态发生蛋白7(bone morphogenetic protein7,BMP7)基因沉默对钙盐诱导猪主动脉瓣膜间质细胞成骨分化的影响及机制,为钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)的干预及治疗提供理论依据。方法:非CAVD瓣膜组织(non-CAVD组)取自手术治疗的主动脉夹层患者,CAVD瓣膜组织(CAVD组)取自因钙化性主动脉瓣狭窄而进行主动脉瓣膜置换术的患者,采用免疫组化和Western blot法检测non-CAVD组和CAVD组中BMP7、Runt相关转录因子2(Runx2)的蛋白质表达水平。选取健康家猪处死后即刻于无菌条件下取主动脉瓣叶,采用胶原酶连续消化法分离主动脉瓣膜间质细胞,观察其形态特征,并用免疫荧光染色行表型鉴定。采用脂质体转染法将BMP7-siRNA转染猪主动脉瓣膜间质细胞,采用qPCR和Western blot法验证BMP7表达的变化;利用钙盐培养基诱导细胞成骨分化,建立体外主动脉瓣膜间质细胞钙化模型后,采用ALP染色和茜素红S染色实验分别检测细胞早期及晚期成骨分化能力;采用qPCR和Western blot法分别检测细胞成骨相关基因及蛋白质Runx2、OCN和OPN的表达情况。并用Western blot法检测BMP7下游信号通路中Smad1/5/8的磷酸化水平。结果:BMP7和Runx2蛋白在CAVD组中表达明显高于non-CAVD组。成功分离出原代猪主动脉瓣膜间质细胞,α-平滑肌肌动蛋白(α-SMA)及波形蛋白(vimentin)染色阳性,血管性血友病因子(von willebrand factor,vWF)染色阴性。转染BMP7-siRNA后猪主动脉瓣膜间质细胞中BMP7的mRNA和蛋白质水平均明显下调,早期及晚期成骨分化能力均明显降低。沉默BMP7基因的表达,可下调Runx2、OCN和OPN的基因及蛋白质表达,且磷酸化的Smad1/5/8(p-Smad1/5/8)蛋白水平明显降低。结论:BMP7基因沉默抑制钙盐诱导的主动脉瓣膜间质细胞的成骨分化能力,BMP7/Smads信号通路可能在该过程中发挥重要作用。  相似文献   

6.
Low-density lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) are co-receptors of Wnt ligands and play important roles in Wnt/β-catenin signal transduction. Mice homozygous for a germline deletion of Lrp6 die at birth with several associated defects, while Lrp5-deficient mice are viable. Here, we conditionally deleted Lrp5 and/or Lrp6 in the mouse gut ((gut-/-)) by crossing mice carrying floxed alleles of Lrp5 and Lrp6 to a strain expressing Cre recombinase from the villin promoter (villin-Cre). The changes in morphology, differentiation, and Wnt signal transduction were validated using immunohistochemistry and other staining. Consistent with observations in mice carrying a homozygous germline deletion in Lrp5, intestinal development in Lrp5(gut-/-) mice was normal. In addition, mice homozygous for villin-Cre-induced deletion of Lrp6 (Lrp6(gut-/-)) were viable with apparently normal intestinal differentiation and function. However, mice homozygous for villin-Cre inactivated alleles of both genes (Lrp5(gut-/-) ; Lrp6(gut-/-)) died within 1 day of birth. Analysis of embryonic Lrp5(gut-/-); Lrp6(gut-/-) intestinal epithelium showed a progressive loss of cells, an absence of proliferation, and a premature differentiation of crypt stem/precursor cells; no notable change in differentiation was observed in the embryos lacking either gene alone. Further immunohistochemical studies showed that expression of the Wnt/β-catenin target, cyclin D1, was specifically reduced in the intestinal epithelium of Lrp5(gut-/-); Lrp6(gut-/-) embryos. Our data demonstrate that Lrp5 and Lrp6 play redundant roles in intestinal epithelium development, and that Lrp5/6 might regulate intestinal stem/precursor cell maintenance by regulating Wnt/β-catenin signaling.  相似文献   

7.

Aims

Oxidative stress is present in and contributes to calcification of the aortic valve, but the driving factors behind the initiation of valve oxidative stress are not well understood. We tested whether the valve endothelium acts as an initiator and propagator of oxidative stress in aortic valve disease.

Methods and Results

Calcified human aortic valves showed side-specific elevation of superoxide in the endothelium, co-localized with high VCAM1 expression, linking oxidative stress, inflammation, and valve degeneration. Treatment with inflammatory cytokine TNFα increased superoxide and oxidative stress and decreased eNOS and VE-cadherin acutely over 48 hours in aortic valve endothelial cells (VEC) and chronically over 21 days in ex vivo AV leaflets. Co-treatment of VEC with tetrahydrobiopterin (BH4) but not apocynin mitigated TNFα-driven VEC oxidative stress. Co-treatment of ex vivo AV leaflets with TNFα+BH4 or TNFα+peg-SOD rescued endothelial function and mitigated inflammatory responses. Both BH4 and peg-SOD rescued valve leaflets from the pro-osteogenic effects of TNFα treatment, but only peg-SOD was able to mitigate the fibrogenic effects, including increased collagen and αSMA expression.

Conclusions

Aortic valve endothelial cells are a novel source of oxidative stress in aortic valve disease. TNFα-driven VEC oxidative stress causes loss of endothelial protective function, chronic inflammation, and fibrogenic and osteogenic activation, mitigated differentially by BH4 and peg-SOD. These mechanisms identify new targets for tailored antioxidant therapy focused on mitigation of oxidative stress and restoration of endothelial protection.  相似文献   

8.
9.
We tested the hypothesis that endothelial nitric oxide (NO) synthase (eNOS)-derived NO modulates rho-kinase-mediated vascular contraction. Because 3-hydroxy-3-methylglutaryl (HMG)-CoA-reductase inhibition can both upregulate eNOS expression and inhibit rhoA/rho-kinase function, a second hypothesis tested was that statin treatment modulates rho-kinase-mediated contraction and that this can occur independently of eNOS. Contractile responses to the receptor-dependent agonists serotonin and phenylephrine but not to the receptor-independent agent KCl were greater in aortic rings from eNOS-null (eNOS(-/-)) vs. wild-type (eNOS(+/+)) mice. Similarly enhanced responses were seen in eNOS(+/+) rings after acute NOS inhibition. The rho-kinase inhibitor Y-27632 abolished or profoundly attenuated responses to receptor agonists in both eNOS(+/+) and eNOS(-/-) rings, but responses in eNOS(+/+) were more sensitive to Y-27632. Mevastatin treatment (20 mg/kg sc per day, 14 days) reduced responses to serotonin and phenylephrine in female mice of both strains. KCl-induced contractions were slightly smaller in eNOS(+/+)-derived aortic rings only. Levels of plasma cholesterol, and aortic expression of rhoA and rho-kinase, did not differ between groups. Thus eNOS-derived NO suppresses rhoA/rho-kinase-mediated vascular contraction. Moreover, a similar suppressive effect on rho-kinase-mediated vasoconstriction by statin therapy occurs independently of effects on eNOS or plasma cholesterol.  相似文献   

10.
Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti‐inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 μmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2‐knockout (KO) and eNOS‐KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.  相似文献   

11.
12.
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.  相似文献   

13.
While Wnt and Hgf signaling pathways are known to regulate epithelial cell responses during injury and repair, whether they exhibit functional cross-talk is not well defined. Canonical Wnt signaling is initiated by the phosphorylation of the Lrp5/6 co-receptors. In the current study we demonstrate that Hgf stimulates Met and Gsk3-dependent and Wnt-independent phosphorylation of Lrp5/6 at three separate activation motifs in subconfluent, de-differentiated renal epithelial cells. Hgf treatment stimulates the selective association of active Gsk3 with Lrp5/6. In contrast, Akt-phosphorylated inactive Gsk3 is excluded from this association. Hgf stimulates β-catenin stabilization and nuclear accumulation and protects against epithelial cell apoptosis in an Lrp5/6-dependent fashion. In vivo, the increase in Lrp5/6 phosphorylation and β-catenin stabilization in the first 6–24 h after renal ischemic injury was significantly reduced in mice lacking Met receptor in the renal proximal tubule. Our results thus identify Hgf as an important transactivator of canonical Wnt signaling that is mediated by Met-stimulated, Gsk3-dependent Lrp5/6 phosphorylation.  相似文献   

14.
Nicotinamide adenine dinucleotide (NAD+) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide–dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD+ and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5′-nucleotidase knockout mice (CD73−/−). Human non-stenotic valves (n = 10) actively converted NAD+ and NMN via both CD73 and NAD+-glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD+ was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD+ (0.81 ± 0.07 vs 0.56 ± 0.10) and NMN (1.12 ± 0.10 vs 0.71 ± 0.08 nmol/min/cm2) compared with controls. CD38 was also primarily engaged in human vascular NAD+ metabolism. Studies using specific ecto-enzyme inhibitors and CD73−/− mice confirmed that CD73 is not the only enzyme involved in NAD+ and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD+ and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.  相似文献   

15.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.  相似文献   

16.
Lrp5/6 are crucial coreceptors for Wnt/β-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/β-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6−/− mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo.  相似文献   

17.
18.
The low-density lipoprotein receptor-related protein (Lrp)-5 functions as a Wnt coreceptor. Here we show that mice with a targeted disruption of Lrp5 develop a low bone mass phenotype. In vivo and in vitro analyses indicate that this phenotype becomes evident postnatally, and demonstrate that it is secondary to decreased osteoblast proliferation and function in a Cbfa1-independent manner. Lrp5 is expressed in osteoblasts and is required for optimal Wnt signaling in osteoblasts. In addition, Lrp5-deficient mice display persistent embryonic eye vascularization due to a failure of macrophage-induced endothelial cell apoptosis. These results implicate Wnt proteins in the postnatal control of vascular regression and bone formation, two functions affected in many diseases. Moreover, these features recapitulate human osteoporosis-pseudoglioma syndrome, caused by LRP5 inactivation.  相似文献   

19.
Recent work has identified LDL receptor-related family members, Lrp5 and Lrp6, as co-receptors for the transduction of Wnt signals. Our analysis of mice carrying mutations in both Lrp5 and Lrp6 demonstrates that the functions of these genes are redundant and are essential for gastrulation. Lrp5;Lrp6 double homozygous mutants fail to establish a primitive streak, although the anterior visceral endoderm and anterior epiblast fates are specified. Thus, Lrp5 and Lrp6 are required for posterior patterning of the epiblast, consistent with a role in transducing Wnt signals in the early embryo. Interestingly, Lrp5(+/-);Lrp6(-/-) embryos die shortly after gastrulation and exhibit an accumulation of cells at the primitive streak and a selective loss of paraxial mesoderm. A similar phenotype is observed in Fgf8 and Fgfr1 mutant embryos and provides genetic evidence in support of a molecular link between the Fgf and Wnt signaling pathways in patterning nascent mesoderm. Lrp5(+/-);Lrp6(-/-) embryos also display an expansion of anterior primitive streak derivatives and anterior neurectoderm that correlates with increased Nodal expression in these embryos. The effect of reducing, but not eliminating, Wnt signaling in Lrp5(+/-);Lrp6(-/-) mutant embryos provides important insight into the interplay between Wnt, Fgf and Nodal signals in patterning the early mouse embryo.  相似文献   

20.
Inhibitory role of Notch1 in calcific aortic valve disease   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号