首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ten elite near-isogenic line (NIL) pairs of bread wheat (Triticum aestivum L em Thell) each carrying one of the two alien leaf rust resistance (Lr) genes Lr32 and Lr28, derived from Triticum tauschii and Triticum speltoides, respectively were tested for disease phenotype in controlled conditions. The disease phenotype of the NIL pair detected distinction between the Lr32 donor parent and its derivatives in ten cultivar backgrounds documented as carrying the gene Lr32. The RAPD and SCAR molecular markers identified earlier as linked to Lr32 amplified the critical marker bands identically in eight of the ten NIL pairs as well as the Lr28 donor parent. The critical bands were not amplified in the Lr32 donor parent. A Triticum speltoides specific microsatellite null allele marker located on chromosome 4AL, the genomic region associated with Lr28, expressed in an identical polymorphism as the RAPD and SCAR markers. The PCR product sequenced from a NIL pair revealed 100% homology. It is confirmed that eight of the ten elite Lr32 lines carry the gene Lr28. Molecular marker tools need to be employed to eliminate such miss-identities and reduce redundancy in Indian elite germplasm stocks of wheat possessing the alien Lr genes.  相似文献   

2.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

3.
Leaf rust resistance gene Lr28 controls one of the important resistances in the Indian subcontinent against the most prevalent Puccinia triticina pathotype 77-5. Pyramiding Lr28 with other resistance genes would therefore, provide durable resistance against rust, a process that can be facilitated by DNA markers. A microsatellite marker wmc313 linked to Lr28 at a distance of 5.0 cM was identified in the population HD2329 × HW2037. The marker was validated in another population developed from WL711× CS + Lr28: 2D/2M 3/8 (acc. 2956) as well as in a few near- isogenic lines (NILs) carrying gene Lr28. Compared to the previously reported marker TPSCAR SCS421570, wmc313 is more closely linked to Lr28. Both these markers flanking the gene should be useful in the deployment of Lr28 into the breeding program using marker-assisted selection allowing pyramiding with other effective genes to confer durable resistance.  相似文献   

4.
Fungal diseases of wheat, including powdery mildew, cause significant crop, yield and quality losses throughout the world. Knowledge of the genetic basis of powdery mildew resistance will greatly support future efforts to develop and cultivate resistant cultivars. Studies were conducted on cultivated emmer-derived wheat line K2 to identify genes involved in powdery mildew resistance at the seedling and adult plant growth stages using a BC1 doubled haploid population derived from a cross between K2 and susceptible cultivar Audace. A single gene was located distal to microsatellite marker Xgwm294 on the long arm of chromosome 2A. Quantitative trait loci (QTL) analysis indicated that the gene was also effective at the adult plant stage, explaining up to 79.0 % of the variation in the progeny. Comparison of genetic maps indicated that the resistance gene in K2 was different from Pm4, the only other formally named resistance gene located on chromosome 2AL, and PmHNK54, a gene derived from Chinese germplasm. The new gene was designated Pm50.  相似文献   

5.
Powdery mildew is one of the most destructive foliar diseases of wheat. A set of differential Blumeria graminis f.sp. tritici (Bgt) isolates was used to test the powdery mildew response of a Triticum monococcum-derived resistant hexaploid line, Tm27d2. Segregation analysis of 95 F2:3 lines from a Chinese Spring/Tm27d2 cross revealed that the resistance of Tm27d2 is controlled by a single dominant gene. Using monosomic analysis and a molecular mapping approach, the resistance gene was localized to the terminal end of chromosome 2AL. The linkage map of chromosome 2AL consisted of nine simple sequence repeat markers and one sequence-tagged site (STS) marker (ResPm4) indicative for the Pm4 locus. According to the differential reactions of 19 wheat cultivars/lines with known powdery mildew resistance genes to 13 Bgt isolates, Tm27d2 carried a new resistance specificity. The complete association of the resistance allele with STS marker ResPm4 indicated that it represented a new allele at the Pm4 locus. This new allele was designated Pm4d. The two flanking markers Xgwm526 and Xbarc122 closely linked to Pm4d at genetic distances of 3.4 and 1.0 cM, respectively, are present in chromosome bin 2AL1-0.85-1.00.  相似文献   

6.
Gametocidal (Gc) genes of Aegilops in the background of the wheat genome lead to breakage of wheat chromosomes. The Q gene of wheat was used as a marker to select 19 deletion lines for the long arm of chromosome 5A of common wheat, Triticum aestivum cv. Chinese Spring (CS). The extents of deleted segments were cytologically estimated by the C-banding technique. The DNAs of deletion lines were hybridized with 22 DNA probes recognizing sites on the long arm of the chromosome (5AL) to determine their physical order. Based on the breeding behavior of the deletion lines, the location of a novel gene (Pv, pollen viability) affecting the viability of the male gamete was deduced. The segment translocated from 4AL to 5AL in CS was cytologically estimated to represent 13% of the total length of 5AL. Although DNA markers were almost randomly distributed along the chromosome arm, DNA markers located around the centromere and C-banded regions were obtained only rarely. Some deletion lines were highly rearranged in chromosome structure due to the effect(s) of the Gc gene. Applications of Gc genes for manipulating wheat chromosomes are discussed.  相似文献   

7.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

8.
9.
A Novel STS Marker for Polyphenol Oxidase Activity in Bread Wheat   总被引:19,自引:0,他引:19  
The enzyme activity of polyphenol oxidase (PPO) in grain has been related to undersirable brown discoloration of bread wheat (Triticum aestivum L.) based end-products, particularly for Asian noodles. Breeding wheat cultivars with low PPO activity is the best approach to reduce the undesirable darkening. Molecular markers could greatly improve selection efficiency in breeding programs. Based on the sequences of PPO genes (GenBank Accession Numbers AY596268, AY596269 and AY596270) conditioning PPO activity during kernel development, 28 pairs of primers were designed using the software ‘DNAMAN’. One of the markers from AY596268, designated as PPO18, can amplify a 685-bp and an 876-bp fragment in the cultivars with high and low PPO activity, respectively. The difference of 191-bp size was detected in the intron region of the PPO gene. The STS marker PPO18 was mapped to chromosome 2AL using a DH population derived from a cross Zhongyou 9507× CA9632, a set of nulli-tetrasomic lines and ditelosomic line 2AS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the STS marker PPO18 and is closely linked to Xgwm312 and Xgwm294 on chromosome 2AL, explaining 28–43% of phenotypic variance for PPO activity across three environments. A total of 233 Chinese wheat cultivars and advanced lines were used to validate the correlation between the polymorphic fragments of PPO18 and grain PPO activity. The results showed that PPO18 is a co-dominant, efficient and reliable molecular marker for PPO activity and can be used in wheat breeding programs targeted for noodle quality improvement.  相似文献   

10.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars. One such cultivar resistant to most races in North America is ‘IDO377s’. To study the genetics of its resistance this spring wheat cultivar was crossed with ‘Avocet Susceptible’ (AvS). Seedlings of the parents, F2 plants, and F3 lines were tested under controlled greenhouse conditions with races PST-43 and PST-45 of P. striiformis f. sp. tritici. IDO377s carries a single dominant gene for resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A total of ten markers were identified, two of which flanked the locus at 4.4 and 5.5 cM. These flanking RGAP markers were located on chromosome 2B with nulli-tetrasomic lines of ‘Chinese Spring’. Their presence in the ditelosomic 2BL line localized them to the long arm. The chromosomal location of the resistance gene was further confirmed with two 2BL-specific SSR markers and a sequence tagged site (STS) marker previously mapped to 2BL. Based on the chromosomal location, reactions to various races of the pathogen and tests of allelism, the IDO377s gene is different from all previously designated genes for stripe rust resistance, and is therefore designated Yr43. A total of 108 wheat breeding lines and cultivars with IDO377s or related cultivars in their parentage were assayed to assess the status of the closest flanking markers and to select lines carrying Yr43. The results showed that the flanking markers were reliable for assisting selection of breeding lines carrying the resistance gene. A linked stripe rust resistance gene, previously identified as YrZak, in cultivar Zak was designated Yr44.  相似文献   

11.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating foliar diseases of wheat and imposes a constant challenge on wheat breeders. Xiaohongpi, a Chinese landrace of wheat (Triticum aestivum L.), shows resistance to powdery mildew during the entire growth stage in the field and under controlled conditions. The F1 plants from cross of the powdery mildew susceptible cultivar Yangmai158 with Xiaohongpi were susceptible to isolate Bgt19, the locally most prevalent Bgt isolate. In the derived F2 population and F3 progenies, the resistance segregation deviated significantly from the one-gene Mendelian ratio. However, marker analysis indicated that only one recessive gene conferred the resistance, which co-segregated with Xsts-bcd1231 that showed co-segregation with Pm4a in different studies. Allelism test indicated that this recessive resistance gene, designated as pmX, is either allelic or tightly linked to Pm4a. The pmX gene was different from Pm4 alleles in resistance spectrum. Examination of the genotype frequencies at pmX and the linked marker loci in the F2 population showed that a genetic variation favoring the transmission of Xiaohongpi alleles could be the cause of deviated segregation. Mapping of the pmX-linked markers using Chinese Spring deletion lines indicated that it resides in the 0.85–1.00 bin of chromosome 2AL.  相似文献   

12.
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F2-derived F3 population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of leaf rust in the South-East Asian region, designated 77–5 (121R63-1), was used for challenging the population under artificially controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes.  相似文献   

13.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

14.
Potato virus Y (PVY) is one of the most important viruses affecting potato (Solanum tuberosum) production. In this study, a novel hypersensitive response (HR) gene, Ny-2, conferring resistance to PVY was mapped on potato chromosome XI in cultivar Romula. In cultivars Albatros and Sekwana, the Ny-1 gene was mapped on chromosome IX. In cv. Romula, the local lesions appeared in leaves inoculated with the PVYN-Wi isolate at 20 and 28 °C; PVY systemic infections were only occasionally observed at the higher temperature. In cvs. Albatros and Sekwana, expression of the necrotic reaction to virus infection was temperature-dependent. PVYN-Wi was localized at 20 °C; at 28 °C, the systemic, symptomless infection was observed. We developed the B11.61600 marker co-segregating with Ny-2 and the S1d11 marker specific for the Ny-1 gene. Fifty potato cultivars were tested with markers B11.6 and S1d11 and marker SC895 linked to the Ny-1 gene in cv. Rywal. These results indicated the utility of these markers for marker-assisted selection of HR-like PVY resistance in potato breeding programs.  相似文献   

15.
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F2 population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F2 derived F3 homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 ± 0.062 cM on either side of the locus. Two RAPD markers S265512 and S253737 which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265512 and SCS253736, respectively. The marker SCS265512 was linked with Lr19 in a coupling phase and the marker SCS253736 was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.  相似文献   

16.
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F2-3 and recombinant inbreed line (F7) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.  相似文献   

17.
Leaf rust, caused by the fungus Puccinia triticina Eriks,is one of the most serious diseases of wheat (Triticum aestivum AABBDD, 2n=6x=42) worldwide. Growing resistant cultivars is an efficient and economical method of reducing losses to leaf rust. Here we report a new leaf rust resistance gene, Lr39, transferred from Aegilops tauschii into common wheat. Lr39 conditions both seedling and adult plant resistance to the leaf rust pathogen. The inter- and intra-chromosomal mapping of the Lr39 gene showed that it is different from all previously described Lr genes. We used monosomic analysis for the inter-chromosomal mapping and wheat microsatellite markers for the intra-chromosomal mapping. The monosomic and ditelosomic analysis indicated that Lr39 is independent of the centromere on the short arm of chromosome 2D. Eight microsatellite markers for 2DS were used for linkage analysis on a population of 57 F2 plants derived from a cross of an Ae. tauschii-derived wheat, cv. Wichita line TA4186 (possessing Lr39), with Wichita monosomics for the D-genome chromosomes. The microsatellite marker analysis confirmed the location of the gene on 2DS. Three markers were polymorphic and linked to the gene. The closest marker Xgwm210 mapped 10.7 cM from Lr39. The location of Lr39 near the telomere of 2DS distinguishes it from the Lr2 and Lr22 loci, which are located on 2DS proximal to Xgwm210. Received: 19 April 2000 / Accepted: 15 May 2000  相似文献   

18.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases worldwide and is also an important disease in China. The wheat translocation line H9014-121-5-5-9 was originally developed from interspecific hybridization between wheat (Triticum aestivum L.) line 7182 and Psathyrostachys huashanica Keng. This translocation line showed resistance to predominant stripe rust races in China when it was tested with nine races of Pst. To determine the inheritance and map the resistance gene, segregating populations were developed from the cross between H9014-121-5-5-9 and the susceptible cultivar Mingxian 169. The seedlings of the F1, F2, and F2:3 generations were tested with race CYR31. The results showed that the resistance in H9014-121-5-5-9 was conferred by a single dominant gene. Bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with the resistance gene locus. Seven polymorphic SSR markers were linked to the resistance gene. A linkage map was constructed according to the genotypes of the seven SSR markers and the resistance gene. Based on the SSR marker positions on the wheat chromosome, the resistance gene was assigned on chromosome 1AL, temporarily designated YrHA. Based on chromosomal location, reaction patterns and pedigree analysis, YrHA should be a novel resistance gene to stripe rust. The molecular markers of the new resistance gene in H9014-121-5-5-9 could be useful for marker-assisted selection in breeding programs against stripe rust.  相似文献   

19.
RFLP analysis has been used to characterise XMv, a chromosome of Aegilops ventricosa present in a disomic addition line of wheat. This chromosome is known to carry a major gene conferring resistance to leaf rust (Lr). The analysis demonstrated that XMv is translocated with respect to the standard wheat genome, and consists of a segment of the short arm of homoeologous group 2 attached to a group 6 chromosome lacking a distal part of the short arm. Lr was located to the region of XMv with homoeology to 2S by analysis of a leaf rust-susceptible deletion line that was found to lack the entire 2S segment. Confirmation and refinement of the location of Lr was obtained by analysis of a spontaneous resistant translocation in which a small part of XMv had been transferred to wheat chromosome 2A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号